
Cryptography and Security

Serge Vaudenay

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

http://lasec.epfl.ch/

SV 2016–17 Cryptography and Security CryptoSec 1 / 1037

http://lasec.epfl.ch/


1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Cryptography and Security CryptoSec 2 / 1037



1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II

SV 2016–17 Ancient Cryptography CryptoSec 3 / 1037



1 Ancient Cryptography
Summary of this Chapter
Terminology
Cryptography Prehistory
Pre-Modern Industrial Cryptography
Cryptography and Information Theory

SV 2016–17 Ancient Cryptography CryptoSec 4 / 1037



A 3-Phases Evolution

Prehistory
cryptography before communication systems (confidentiality)
Industrial era
communication and information systems (confidentiality)
Modern cryptography
since 1976
mass communication
academic research
(confidentiality, integrity, authentication, privacy, non-repudiation,
fairness, access control, timestamping, etc)
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Milestones of Prehistory

1 security by obscurity: private encryption algorithms
several techniques: substitutions and transpositions

2 encryption with a configurable secret key
e.g., Vigenère

3 Kerckhoffs principle
→ security should rely on the secrecy of the key only
(not on the secrecy of the algorithm)
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From Industrial Era to Modern Crypto

communicating
information theory
mass communication (radio)
computing
computer science
automata (electromechanic devices)
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Early Milestones of Modern Cryptography

Kerckhoffs (1883): principles of modern crypto
Shannon (1949): an info-theoretical approach of cryptography
Diffie-Hellman (1976): public-key cryptography
DES (1977): encryption standard for non-military applications
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Cryptography vs Coding Theory

Code
a system of symbols which represent information

Coding theory
science of code transformation which enables to send
information through a communication channel in a
reliable and efficient way (→ dummy adversary)

Cryptography
(a bit obsolete) the science of secret codes, enabling
the confidentiality of communication through an
insecure channel (→ malicious adversary)

Cipher
secret code, enabling the expression of a public code by
a secret one by making the related information
confidential
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Cryptanalysis

Cryptanalysis, cryptographic analysis, cryptoanalysis
theory of security analysis of cryptographic systems

To cryptanalyze a cryptosystem (̸= to break it)
to prove or to disprove the security provided by a
cryptosystem

To break a cryptosystem
to prove insecurity (= to disprove security)

Cryptology ̸= cryptography
science of cryptography and cryptanalysis (sometimes
also includes steganography)

Steganography ̸= cryptography
science of information hiding
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Once Upon a Time, in the XIX-th Century

Alfred de Musset George Sand

SV 2016–17 Ancient Cryptography CryptoSec 12 / 1037



Steganography

[censored]
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[censored]
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[censored]
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Cryptographic Problems

In ancient time:
encryption

In modern cryptography:
encryption
detection malicious modification of information
data authentication
access control
timestamping
fair exchange
digital rights management
privacy
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Applications

bank cards
Internet (e-commerce)
mobile telephony (DECT, GSM, GPRS, EDGE, 3GPP...)
e-passport
mobile communication (Bluetooth, WiFi...)
traceability, logistic & supply chains (RFID)
pay-TV, DRM
access control (car lock systems, metro...)
payment (e-cash)
electronic voting
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The Fundamental Trilogy

Message
X

- -
X

�
�

Adversary

Confidentiality (C): only the legitimate receiver can get X
Authentication + Integrity (A+I): only the legitimate sender can
insert X and the received message must be equal to X
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Basic Security Properties

Confidentiality
the information should not leak to any unexpected party
Integrity
the information must be protected against any malicious
modification
Authentication
the information should make clear who is its author
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Secret Writing

Hieroglyphs!

SV 2016–17 Ancient Cryptography CryptoSec 21 / 1037



Transpositions
Spartan scytales

this␣is␣a␣dummy␣message

?

t h i s ␣ i

s ␣ a ␣ d u

m m y ␣ m e

s s a g e

?

TSMSH␣MSIAYAS␣␣G␣DMEIUE
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Simple Substitution: Caesar Cipher

a b c d e f g h i k l m n o p q r s t v x

D E F G H I K L M N O P Q R S T V X A B C

caesar −→ FDHXDV

Quiz:
Q: How to break this?

A: ol fgngvfgvpny nanylfvf
ROT13
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Simple Substitution: ROT13

a b c d e f g h i j k l m n o p q r s t u v w x y z

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

rot −→ EBG

Application: quiz
Q: Where can we find good quiz?

A: va pnenzone pnaqvrf
ROT13
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Simple Substitution: Random Substitution Table

a b c d e f g h i j k l m n o p q r s t u v w x y z

H D L X O Q K W G S Z A P F T M V C B R E U Y I N J

crypto −→ LCNMRT

Number of possible tables: 26! ≈ 288.4
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Probabilities of Occurrence in English

letter probability letter probability letter probability
A 0.082 J 0.002 S 0.063
B 0.015 K 0.008 T 0.091
C 0.028 L 0.040 U 0.028
D 0.043 M 0.024 V 0.010
E 0.127 N 0.067 W 0.023
F 0.022 O 0.075 X 0.001
G 0.020 P 0.019 Y 0.020
H 0.061 Q 0.001 Z 0.001
I 0.070 R 0.060
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Rough Frequencies in English

1 most frequent: E
2 very frequent: T A O I N S H R

3 frequent: D L

4 rare: C U M W F G Y P B

5 very rare: V K J X Q Z

30 most common digrams (in decreasing order):
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND,
OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI and OF.

12 most common trigrams (in decreasing order):
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR and DTH.
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A Simple Substitution Cipher (from Stinson)

------------------------------------------

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

------------------------------------------

NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

------------------------------------------

NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

------------------------------------------

XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR
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Step I: Frequency Analysis

letter frequency letter frequency letter frequency
A 0 J 11 S 3
B 1 K 1 T 2
C 15 L 0 U 5
D 13 M 16 V 5
E 7 N 9 W 8
F 11 O 0 X 6
G 1 P 1 Y 10
H 4 Q 4 Z 20
I 5 R 10
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Solution

[homework]
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Vigenère Cipher

Plaintext: this is a dummy message

Key: ABC

this is a dummy message

+ ABCA BC A BCABC ABCABCA

= TIKS JU A EWMNA MFUSBIE

Ciphertext: TIKSJUAEWMNAMFUSBIE

e.g. y+ C = A.

SV 2016–17 Ancient Cryptography CryptoSec 31 / 1037



Character Addition Rule

+ a b c d e f g · · ·
A A B C D E F G · · ·
B B C D E F G H · · ·
C C D E F G H I · · ·
D D E F G H I J · · ·
E E F G H I J K · · ·
F F G H I J K L · · ·
G G H I J K L M · · ·
...

...
...

...
...

...
...

...

cultural remark: using the mapping (isomorphism) a↔ 0, b ↔ 1,
c ↔ 2, ... this is the addition modulo 26
(group Z26)
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Column-Dependent Substitution

A B C A B C

t h i T I K

s i s S J U

a d u A E W

m m y −→ M N A

m e s M F U

s a g S B I

e E
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Kasiski Test

to check a guess n for the key length
look at repeating patterns at a distance multiple of n
check that this is significant
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Kasiski Test Example

→ look at unexpectedly frequent patterns

C H R E E VOAHMA E R A T B I AX XWT NX B EEOPHBSBQMQEQE RBW
R V X UOA KXAOS X XWE A HBWG J MMQMNKGRF VGXWTRZXW I A K
L X F P S K AUTEMN D C MG TSXMX B TU I ADNGMGPSR E L XN J EL X
V R V P R T U LHDNQW T WD TYG B P HX T F AL J HASVB F XNGL L CHR
Z BWE L E KMS J I K N B HWRJ GNMG J SG LXFEYPHAGNRB I EQJ T
AMR V L CRREMN D G L X R R I MGN SNRWCHRQHAEYE V TAQE BB I
P E E WE V KAKOEWA D R EMXM T B HHC HRTKDNVRZ C HRCL QOHP
WQ A I I WXNRMGWO I I F KEE

CHR occurs at 1, 166, 236, 276, 286.
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Question

In a random string of 313 characters from an alphabet of
26 letters, is it common to observe 5 occurences of the

same trigram?
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Reminders on Combinatorics

number of k -tuples of elements in a set of size z:
example z = 3, k = 2: 00, 01, 02, 10, 11, 12, 20, 21, 22

zk

Application (k = 3, z = 26): #possible trigrams is 263 = 17 576
number of possible subsets of t elements in a set of size n:
example n = 3, t = 2: {0, 1}, {0, 2}, {0, 3}, {1,2}, {1, 3}, {2, 3}(n

t

)
=

n!
t!(n − t)!

=
n · (n − 1) · · · (n − t + 1)

t · (t − 1) · · · 1
Application: probability to get ball u (drawn with probability p)
exactly t times out of n samples:

( n
t

)
pt(1− p)n−t

(binomial distribution)
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Are 5 Occurrences Significant? — i

In a truly random sequence of 313 characters x1x2 . . . x313 with
alphabet of 26 letters

there are n = 311 trigrams t1 = x1x2x3, t2 = x2x3x4, ...
tn = xnxn+1xn+2

every possible trigram abc has a number of occurrences
nabc =

∑n
i=1 1ti=abc

approximation: all ti ’s are independent and uniformly distributed
in a set of 1

p = 263 = 17 576 possibilities

Pr[nabc = t ] =
( n

t

)
pt(1− p)n−t

Note: n × p is small
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Reminders on Calculus

Stirling Formula:
n! ≈

√
2πn × nne−n

weaker formula: log n! ≈ n(log n − 1)
for λ = n × p ≪ 1:
(example: n = 311, p = 1

17 576 , t ≤ 5)

(binomial)
(n

t

)
pt(1− p)n−t ≈ λt

t!
e−λ (Poisson)

Taylor development on eλ:

eλ =
t−1∑
i=0

λi

i!
+

∫ λ

0

(λ− x)t−1

(t − 1)!
ex dx
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Are 5 Occurrences Significant? — ii

eλ =
t−1∑
i=0

λi

i!
+

∫ λ

0

(λ− x)t−1

(t − 1)!
ex dx

Pr[nabc = t ] ≈ λt

t! e−λ with λ = 311
17 576

we have

Pr[nabc ≥ t ] ≈ 1−
t−1∑
i=0

λi

i!
e−λ

= e−λ
∫ λ

0

(λ− x)t−1

(t − 1)!
ex dx

≤
∫ λ

0

(λ− x)t−1

(t − 1)!
dx

=
λt

t!
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Are 5 Occurrences Significant? — iii

Pr[nabc ≥ t ] ≤ λt

t!

maximize over all abc:

max
abc

Pr[nabc ≥ t ] ≤
∑
abc

Pr[nabc ≥ t ]

with t = 5 we have

max
abc

Pr[nabc ≥ t ] ≤ 263λ
t

t!
≤ 10−6

so the probability to get at least 5 occurrences of the same
trigram is less that 10−6

conclusion:
observing 5 occurrences of CHR is significantly odd
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Where does CHR Come From?

key of length multiple of 5 + frequent trigram

· · · · · · · · · ·
t h e · · C H R · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · −→ · · · · ·
t h e · · C H R · ·
· · · · · · · · · ·
t h e · · C H R · ·
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Index of Coincidence

Index(x1, . . . , xn) = Pr
I,J
[xI = xJ |I < J] =

∑
c∈Z

nc(nc − 1)
n(n − 1)

where I, J ∈ {1, . . . ,n} are independent and uniformly distributed

Proposition

For any permutation σ over Z , we have

Index(σ(x1), . . . , σ(xn)) = Index(x1, . . . , xn)

For any permutation σ of {1, . . . , n}, we have

Index(xσ(1), . . . , xσ(n)) = Index(x1, . . . , xn)

the index of coincidence is invariant by substitution and transposition
Index(English text)→ 0.065 when n→ +∞
Index(Random string)→ 0.038 when n→ +∞
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Application to the Vigenère Cipher

With the example TIKSJUAEWMNAMFUSBIE, if we guess that the key is
of length 3, we can write

T I K

S J U

A E W

M N A

M F U

S B I

E

so we can compute the index of coincidence of TSAMMSE, IJENFB and
KUWAUI.
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Example — i
guess the key is of length 4

C H R E

E V O A

H M A E

R A T B

I A X X

W T N X
...

...
...

...

first column:

CEHRIWBPBEBXKSEWMKVTWLSTDTXIGSXLVUNWGXLSXLZLSNRMGEABJRRNXMNHAVEPEKAMBHDZCHAXGIE

(string of 79 characters)

Index(col) = Index(A4B5C2D2E7G4H4I3J1K3L5M4N4P2R4S5T3U1V3W4X7Z2)

which is 0.0422: this is too low
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Example — ii
guess the key is of length 5

C H R E E

V O A H M

A E R A T

B I A X X

W T N X B

E E O P H
...

...
...

...
...

first column:

CVABWEBQBUAWWQRWWXANTBDPXXRDWBFAXCWMNJJFAIACNRNCATBWKDMCDCQQXWK

(string of 63 characters)

Index(col) = Index(A7B6C6D4E1F2I1J2K2M2N4P1Q4R3T2U1V1W9X5) = 0.0630

this is high enough!
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Example — iii

next step: find the first character of the key
note that W is frequent while U and V are much less frequent and
Y and Z are inexistent
in English, h is frequent while f and g are much less frequent and
j and k are sparse
idea: guess that W is the encryption of h
h+ P = W

the first character of the key may be P
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Enigma

electro-mechanical encryption device (typewriter)
could be plugged to a radio transmiter
patented (1918)
developped to be secure even with public specifications
(Kerckhoffs principle), in hostile environment (battlefield)
used by German armies in WW2
preliminary attacks by polish mathematician Rejewski in 1932
(before Anschluss)
“industrial” (over 2000 messages decrypted per day) attack by
UK intelligence at Bletchley Park during WW2 (performing:
Turing)
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Picture of Enigma
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Enigma Circuit

https://en.wikipedia.org/wiki/Enigma_machine
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Example: DEAD BEEF

in/out

A

B

C

D

E

F

plugrotor 1

i1

rotor 2

i2

rotor 3

i3

reflector

deadbeef −→ AADCCBBB
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Enigma Building Blocks

given a permutation σ over Z = {A,B, . . . ,Z}, a fixed point is an
element x ∈ Z such that σ(x) = x
an involution over Z is a permutation σ of Z such that
σ(σ(x)) = x for all x .
Examples: reflector, plug board
a rotor σ defines a set of permutations σ0, . . . , σ25 over Z
the rotor in position i implements permutation σi
such that σi = ρi ◦ σ ◦ ρ−i where ρ(A) = B, ρ(B) = C, ..., ρ(Z) = A

C
B

A
Z

A = σ(C)

σ(B)

σ(A)

D
C

B
A

D
C

B
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The Enigma Cipher (Mathematically) — i

We define permutations over the 26-character alphabet.
Reflexion. π is a fixed involution with no fixed points.

Rotors. S be a set of five permutations over the alphabet.
ρ is the circular rotation over the alphabet by one
position.
ρi thus denotes the circular rotation over the alphabet
by i positions.
αi denotes ρi ◦ α ◦ ρ−i

Wire connection. σ is a configurable involution with 6 pairs (14 fixed
points)
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The Enigma Cipher (Mathematically) — Example



x : A B C D E F
ρ(x) : B C D E F A
α(x) : C A B D F E
α0(x) : C A B D F E
α1(x) : F D B C E A
α2(x) : B A E C D F
α3(x) : A C B F D E
α4(x) : F B D C A E
α5(x) : F A C E D B


αi = ρi ◦ α ◦ ρ−i
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The Enigma Cipher (Mathematically) — ii

Secret key: 3 components:
σ
an ordered choice α, β, γ ∈ S of pairwise different
permutations
a number a

Plaintext: x = x1, . . . , xm

Ciphertext: y = y1, . . . , ym

Encryption:

yi = σ−1 ◦ α−1
i1 ◦ β

−1
i2 ◦ γ

−1
i3 ◦ π ◦ γi3 ◦ βi2 ◦ αi1 ◦ σ(xi)

where i3i2i1 are the last three digits of the basis 26
numeration of i + a.
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Key Entropy in Enigma
σ: number of involutions with 14 fixed points(

26
14

)
× 11× 9× 7× · · · × 1

= 9 657 700× 11× 9× 7× · · · × 1
= 100 391 791 500
≈ 237

α, β, γ: number of choices for the rotors

5× 4× 3 = 60 ≈ 26

a: number of initial positions

263 = 17 576 ≈ 214

total: 57 bits
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A Turing Machine
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Q

Can we reasonably assume that the adversary ignores
the cryptosystem?

SV 2016–17 Ancient Cryptography CryptoSec 59 / 1037



The Laws of Modern Cryptography
Law I: the Kerckhoffs Principle

security should not rely on the secrecy of the cryptosystem itself
motivation:
the adversary may get some information about the system (e.g.
by reverse engineering, corruption, etc)
meaning:
security analysis must assumes that the adversary knows the
cryptosystem
does not mean:
cryptosystem must be public
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Kerckhoffs Principles

Kerckhoffs Principles

1 Le système doit être matériellement, sinon mathématiquement,
indéchiffrable;

2 Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi;

3 La clef doit pouvoir en être communiquée et retenue sans le secours de
notes écrites, et être changée ou modifiée au gré des correspondants;

4 Il faut qu’il soit applicable à la correspondance télégraphique;
5 Il faut qu’il soit portatif et que son maniement ou son fonctionnement

n’exige pas le concours de plusieurs personnes;
6 Enfin, il est nécessaire, vu les circonstances qui en commandent

l’application, que le système soit d’un usage facile, ne demandant ni
tension d’esprit, ni la connaissance d’une longue série de règles à
observer.
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The Laws of Modern Cryptography
Law II: the n2 Problem

in a network of n users, there is a number of potential pairs of users
within the order of magnitude of n2

we cannot assume that every pair of users share a secret key
we must find a way for any pair of users to establish a shared
secret key
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How Many Symmetric Keys?

for n users we may need up to n(n−1)
2 symmetric keys
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The Laws of Modern Cryptography
Law III: the Moore Law

the speed of CPUs doubles every 18–24 months
we should wonder how long a system must remain secure
we must estimate the speed of CPU at the end of this period
we assess security against brute force attacks
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Moore’s Law

ft ≈ 109 × 2
1

2 years (t−2 004) × cste

number of keys per second which can be tested in an exhaustive
search with technology at time t
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Security by Key Length

to offer security between current time t0 until time t0 +∆, the key
length must be at least

margin + log2

(∫ t0+∆

t0
ft dt

)

assuming that ft is exponential, the key length must be Ω(∆)
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A 128-Bit Key

11000000 10010011 00000011 01001001
11010011 11110010 01111011 10100101
10101001 00110001 00110000 11011110
00101110 01001110 00011111 00100001

number of possible combinations:

128 times︷ ︸︸ ︷
2× 2× 2× · · · × 2

= 2128

= 340 282 366 920 938 463 463 374 607 431 768 211 456︸ ︷︷ ︸
39 digits
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Exhaustive Search on 128 Bits

in 2007, a standard PC could test 1 000 000 keys per second
to run exhaustive search within 15 billion years, we need 720 000
billons of 2007-PCs!
if the Moore law goes on, in 2 174, a single PC will do in within a
second
better create the Big Bang and take 15 billion years of
vacations to solve the problem within a second!
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The Laws of Modern Cryptography
Law IV: the Murphy Law

if there is a single security hole, the system will fall into it
never leave a security hole
don’t bet on security, rather prove it
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Bitwise Exclusive Or

exclusive or (XOR) of two bits:
⊕ 0 1
0 0 1
1 1 0

XOR: binary addition where carry bits are ignored
XOR: addition modulo 2
bitwise XOR of two bitstrings:

10010
⊕ 00111
= 10101

XOR properties
closure: the XOR of bitstrings is a bitstring
associative: (a⊕ b)⊕ c = a⊕ (b ⊕ c)
commutative: a⊕ b = b ⊕ a
neutral element: a⊕ [00 · · · 0] = a
(self-)invertibility: a⊕ a = [00 · · · 0] (or + = −)
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Vernam Cipher

we use a uniformly distributed random
key K (a bitstring)
every message X requires a new K of
same size (one-time pad)

Encrypting X with K : compute X ⊕ K
Decrypting Y with K : compute Y ⊕ K

⊕ 0 1
0 0 1
1 1 0

(X ) 10010
⊕ (K ) 00111
= (Y ) 10101

⊕ (K ) 00111
= (X ) 10010
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Vernam Cipher

⊕ 0 1
0 0 1
1 1 0

-Message
10010

⊕
?

00111

-
10101

-
10101

⊕
?

00111

-Message
10010

�
�

Adversary
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Q

When is this insecure?
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Using the Same Key Twice

Y1 = X1 ⊕ K
Y2 = X2 ⊕ K

-Message
X1,X2

Encrypt -
Y1,Y2

-
Y1, Y2

Decrypt -Message
X1, X2

�
�

Adversary

Y1 ⊕ Y2 = (X1 ⊕ K )⊕ (X2 ⊕ K ) = (X1 ⊕ X2)⊕ (K ⊕ K ) = X1 ⊕ X2

leakage of the X1 ⊕ X2 value
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Visual Cryptography

Pixel coding

0 −→

1 −→

Pixel XOR

0⊕ 0 −→ ≈

0⊕ 1 −→ =

1⊕ 0 −→ =

1⊕ 1 −→ ≈
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Example

⊕

=
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Using the Same Key Twice

Y1

-⊕

K

-=

X1

Y2

-⊕ -=

X2

?
⊕

-=

X1 ⊕ X2
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Insecurity Cases in the Vernam Cipher

if K is smaller than X

Y = (XL ⊕ K )||XR

→ insecure
if K is not uniformly distributed

Pr[K = k ] high =⇒ Pr[X = y ⊕ k ] high

→ insecure
if K is used twice and messages are redundant

Y1 ⊕ Y2 = X1 ⊕ X2 =⇒ information about X1 and X2

→ insecure
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Summary of Security Requirements

the key must have (at least) the same length of the message
the key must be uniformly distributed
the key must be thrown away after usage

/: this makes no sense for most of applications!,: this provides perfect security
makes sense to prepare emergency communication (red
telephone)

keys are exchanged (through slow channels) before the
messages to transmit are known

bad news for other application: there is essentially no better
cipher with this strong security property
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Intuition on Why it is Perfectly Secure

if the adversary gets Y = y then for any x

Pr[X = x |Y = y ] = Pr[X = x |X ⊕ K = y ] = Pr[X = x ]

because X and X ⊕ K are statistically independent
the adversary gets no information about X in knowing that Y = y
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Abelian Group Laws
Definition
An Abelian group is a set G together with a mapping from G ×G to
G which maps (a,b) to an element denoted a + b and such that

1. [closure] for any a,b ∈ G, we have a + b ∈ G
2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)

(notation: n.a means a + a + · · ·+ a (n times))
3. [neutral element] there exists an element denoted by 0 s.t. for

any a, a + 0 = 0 + a = a
4. [invertibility] for any a there exists an element denoted by −a s.t.

a + (−a) = (−a) + a = 0 (notation: a− b means a + (−b))
5. [commutativity] for any a, b ∈ G, we have a + b = b + a

Z with the regular addition
{0, 1}n with ⊕

{0, 1, . . . , n − 1} with (a, b) 7→
{

a + b if a + b < n
a + b − n otherwise
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Useful Lemma

Lemma
Let X and K be two independent random variables in a given group.
If K is uniformly distributed, then Y = K + X is uniformly distributed
and independent from X.

Proof.
For any x and y :

Pr[X = x ,Y = y ] = Pr[X = x ,K = y − x ]
= Pr[X = x ]× Pr[K = y − x ]

= Pr[X = x ]
1

#group

Pr[Y = y ] =
∑

x

Pr[X = x ,Y = y ]

=
1

#group
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Generalized Vernam Cipher

Let G be an Abelian group and consider an arbitrary plaintext source
producing elements in G

let K be uniformly distributed in G and independent from the
plaintext
given X , the encryption of X with key K is Y = K + X
given Y , the decryption of Y with key K is X = (−K ) + Y
the key is used only once

Theorem
For any distribution of X over G, Y is independent from X and
uniformly distributed.

(perfect secrecy)
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Information Theory
Claude Shannon

[Claude Shannon]
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skip reminders on Shannon entropy

skip

CAUTION: in cryptography, “entropy” is often used in an informal way
by meaning some kind of “effective bit-length”



Reminder on the Shannon Entropy — i

H(X ): number of bits of information to represent the value of X
H(X ,Y ): entropy of (X ,Y )

H(X |Y ) = H(X ,Y )− H(Y )

H(X ) = −
∑

x

Pr[X = x ] log2 Pr[X = x ]

H(X ,Y ) = −
∑
x,y

Pr[X = x ,Y = y ] log2 Pr[X = x ,Y = y ]

H(X |Y ) = −
∑
x,y

Pr[X = x ,Y = y ] log2 Pr[X = x |Y = y ]
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Reminder on the Shannon Entropy — ii

a real function f is convex on [a, b] iff

∀set S ∀t : S → [a, b] ∀p : S →]0, 1]∑
x∈S

px = 1 =⇒
∑
x∈S

px f (tx) ≥ f

(∑
x∈S

px tx

)

it is strictly convex if we further have the property that equality
implies all tx are equal
a real function f which has a second derivative on ]a,b[ is strictly
convex on [a, b] iff its second derivative is always > 0 on ]a, b[
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Reminder on the Shannon Entropy — iii

Proposition

H(X ) ≥ 0 with equality if, and only if X is constant

Proof.
f (t) = − log2 t is strictly convex on [0, 1]
take tx = px = Pr[X = x ] and get

H(X ) ≥ − log2

(∑
x∈S

p2
x

)

clearly,
∑

x p2
x ≤ 1 so this log is positive

Assuming equality, we must have
∑

x p2
x = 1 so all px must be

equal to 1 so there must be a single x (we cannot have two
different values with probability 1)
(i.e. X is constant equal to this x)

SV 2016–17 Ancient Cryptography CryptoSec 89 / 1037



Reminder on the Shannon Entropy — iv
Proposition

H(X ,Y ) ≥ H(X ) with equality if, and only if Y can be written f (X )

Proof.
We write

H(Y |X ) =
∑

x

Pr[X = x ]
∑

y

Pr[Y = y |X = x ] log2 Pr[Y = y |X = x ]

We know that for each x the inner sum is ≥ 0 with equality iff
there is a single y = f (x) for which Pr[Y = y |X = x ] > 0
Clearly: H(Y |X ) ≥ 0
Assuming equality, for each x we define y = f (x) and get
Pr[Y = f (x)|X = x ] = 1 for all x
so, Pr[Y = f (X )] = 1

H(Y |X ) = −
∑
x,y

Pr[X = x ,Y = y ] log2 Pr[Y = y |X = x ]
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Reminder on the Shannon Entropy — v
Proposition

H(X ,Y ) ≤ H(X ) + H(Y ) with equality if, and only if X and Y are
independent.

Proof.
t 7→ t ln t has second derivative 1

t so it is convex and

−
∑

y

Pr[Y = y ]ty log2 ty ≤ −

(∑
y

Pr[Y = y ]ty

)
log2

(∑
y

Pr[Y = y ]ty

)

with equality iff all ty ’s for Pr[Y = y ] ̸= 0 are equal
Applying this to ty = Pr[X = x |Y = y ] yields

−
∑

y

Pr[X = x, Y = y ] log2 Pr[X = x|Y = y ] ≤ −Pr[X = x ] log2 Pr[X = x ]

with equality iff Pr[X = x |Y = y ] does not depend on y
summing up for all x leads to H(X |Y ) ≤ H(X ) with equality iff X
and Y are independent
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Reminder on the Shannon Entropy — vi

Proposition

If Pr[X = x ] ̸= 0 for n values of x then H(X ) ≤ log2 n with equality if,
and only if all non-zero Pr[X = x ] are equal to 1

n .

Proof.
t 7→ − ln t has second derivative 1

t2 so is convex and

∑
x

Pr[X = x ] log2 tx ≤ log2

(∑
x

Pr[X = x ]tx

)

with equality iff all tx ’s for Pr[X = x ] ̸= 0 are equal
Applying this to tx = 1/Pr[X = x ] yields

H(X ) ≤ log2 n

with equality iff all nonzero Pr[X = x ] are equal
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The Shannon Encryption Model

Key
source

6
Key K

6

Message
source

-Message X Encipherer
C

-Cryptogram Y Decipherer
C−1

-X

6
Enemy Cryptanalyst
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The Shannon Encryption Model

message is a random variable with a given a priori distribution
for later: with any a priori distribution
key is a random variable with specified distribution, independent
from the message
correctness property: Pr[C−1

K (CK (X )) = X ] = 1
adversary gets the random variable Y = CK (X ) only
for other security models to be seen: other assumptions
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Perfect Secrecy — i

Definition
Perfect secrecy means that the a posteriori distribution of the
plaintext X after we know the ciphertext Y is equal to the a priori
distribution of the plaintext:

∀x , y Pr[Y = y ] ̸= 0 =⇒ Pr[X = x |Y = y ] = Pr[X = x ].

The adversary learns nothing about X by intercepting Y .
(Remark: this definition is relative to the distribution of X .)
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Perfect Secrecy — ii

Proposition

Perfect secrecy is equivalent to the statistic independence of X and
Y .

Proof.
Independence
⇐⇒ ∀x , y Pr[X = x ,Y = y ] = Pr[X = x ]Pr[Y = y ].
Since Pr[X = x |Y = y ] = Pr[X=x,Y=y ]

Pr[Y=y ] by definition, the result is
trivial!
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Perfect Secrecy — iii

Proposition

Perfect secrecy is equivalent to H(X |Y ) = H(X ).

Proof.
Prefect secrecy is equivalent to statistic independence of X and Y .
Statistic independence of X and Y is equivalent to
H(X ,Y ) = H(X ) + H(Y ).
Since H(X |Y ) = H(X ,Y )− H(Y ) the result is trivial.
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Vernam Cipher Provides Perfect Secrecy

Theorem
For any distribution of the plaintext, the generalized Vernam cipher
provides perfect secrecy.
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Influence of the Plaintext Distribution
Theorem
Let CK be a cipher with K following a given distribution. Let p and p′

be two distributions for X such that support(p′) ⊆ support(p).
CK provides perfect secrecy with p implies that CK provides perfect
secrecy with p′.

Proof. If Prp′ [Y = y ] ̸= 0, there exists k and x0 such that Ck (x0) = y ,
Pr[K = k ] ̸= 0, and p′(x0) ̸= 0. Since support(p′) ⊆ support(p), we
have p(x0) ̸= 0 so Prp[Y = y ] ̸= 0. Due to perfect secrecy,

Pr
p
[Y = y ] = Pr

p
[Y = y |X = x ] = Pr[CK (x) = y ] = Pr

p′
[Y = y |X = x ]

then

Pr
p′
[Y = y ] =

∑
x

Pr
p′
[Y = y |X = x ]p′(x) =

∑
x

Pr
p
[Y = y ]p′(x)

= Pr
p
[Y = y ]

∑
x

p′(x) = Pr
p
[Y = y ] = Pr

p′
[Y = y |X = x ]
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Shannon Theorem

Theorem (Shannon 1949)

Perfect secrecy implies H(K ) ≥ H(X ).

Proof.
we have H(Y ) ≥ H(Y |K )

knowledge of K makes X ↔ Y , thus H(Y |K ) = H(X |K )

since X and K are independent, we obtain H(Y |K ) = H(X )
we thus have H(Y ) ≥ H(X )

knowledge of X makes K → Y , thus H(Y ,K |X ) = H(K |X )

since X and K are independent, H(K |X ) = H(K ), so
H(Y ,K |X ) = H(K )

we have H(Y ,K |X ) ≥ H(Y |X ), thus H(K ) ≥ H(Y |X )

if we have perfect secrecy, we have
H(Y |X ) = H(X |Y ) + H(Y )− H(X ) = H(Y )
thus, we have H(K ) ≥ H(Y ) ≥ H(X )
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Other Form of the Shannon Theorem
Theorem (Shannon 1949)

Perfect secrecy implies that the support of K is at least as large as
the support of X .

Proof. Let y be such that Pr[Y = y ] ̸= 0.
since X and K must be independent

Pr[X = x ,Y = y ] = Pr[X = x ,CK (x) = y ] = Pr[X = x ]Pr[CK (x) = y ]

perfect secrecy implies
Pr[CK (x) = y ] = Pr[Y = y |X = x ] = Pr[Y = y ] for all x such that
Pr[X = x ] ̸= 0
consequently, for all x in the support of X we have
Pr[CK (x) = y ] ̸= 0 so there exists one k in the support of K such
that Ck (x) = y . Let write it k = f (x).
for any x in the support of X we have C−1

f (x)(y) = x .
Clearly, f (x) = f (x ′) implies x = x ′.
Consequently, we have an injection from the support of X to the
support of K .
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The Negative Side of Shannon Theorem

Corollary

If we want to achieve perfect secrecy the number of possible keys
must be at least as large of the number of possible plaintexts.

Conclusion: we cannot do better than the Vernam cipher
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Other Consequences

Theorem
Perfect secrecy implies that X has a finite support.

Proof.
let y s.t. p = Pr[Y = y ] ̸= 0
due to perfect secrecy we have Pr[Y = y ] = Pr[CK (x) = y ] for all
x in the support
since [C−1

K (y) = x ]⇐= [CK (x) = y ], we have
Pr[C−1

K (y) = x ] ≥ Pr[CK (x) = y ] = p for all x in the support
thus

1 ≥
∑

x∈support

Pr[C−1
K (y) = x ] ≥ p.#support

#Support(X ) ≤ 1
p
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Summary on the Shannon Results

we have mathematically formalized the notion of perfect secrecy
Vernam Cipher achieves perfect secrecy
despite Vernam Cipher is expensive, there is no cheaper
alternative

Q: Can the theory of cryptography stop here?

A: Abg lrg: jung zvffrf vf gur abgvba bs

pbzcyrkvgl
ROT13
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Information Theory vs Complexity Theory

Information Theory

Is information there or not?

Is it possible to recover information?

Complexity Theory

How much does it cost to recover
information?

Is it doable to recover information?

security shall rather be based on lower bounding the complexity of
breaking the system
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The Early Days of Computer Science
Alan Turing
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Conclusion

in prehistory: security by obscurity
now a need for standard solutions
perfect security requires an unreasonable cost
conclusion: we must trade security against cost
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Must be Known

Kerckhoffs principle
the ACI trilogy (Authentication, Confidentiality, Integrity)
Vernam cipher
Shannon model of encryption
perfect secrecy
Shannon Theorem
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Train Yourself

Vigenère: final exam 2009–10 ex1
Vernam:
midterm exam 2010–11 ex3
midterm exam 2015–16 ex1
entropy: final exam 2012–13 ex3
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1 Ancient Cryptography

2 Diffie-Hellman Cryptography

3 RSA Cryptography

4 Elliptic Curve Cryptography

5 Symmetric Encryption

6 Integrity and Authentication

7 Case Studies I

8 Public-Key Cryptography

9 Trust Establishment

10 Case Studies II
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Roadmap

reminders on arithmetics, groups, Zn

Diffie-Hellman key exchange over a group
reminders on rings, fields, Z∗p
Diffie-Hellman key exchange, concretely
ElGamal cryptosystem
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Prime Numbers

Definition
A prime number is a positive integer which has exactly two positive
factors: 1 and itself.

2, 3,5, 7, 11,13, 17, 19,23, 29, 31, . . .
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Unique Factorization

Theorem
Each integer n can be uniquely written

n = u × pα1
1 × · · · × pαr

r

where p1 < · · · < pr are prime, u = ±1, and α1, . . . , αr are
non-negative integers.
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Modulo n

Operation x mod n: remainder in the Euclidean division of x by n

x = 8273 143 = n
−715 57 = ⌊x/n⌋

1123
−1001

x mod n = 122

8273 mod 143 = 122

8273 = 122 + 143× 57
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Euclidean Division

Theorem (Euclidean Division)

For any a ∈ Z and any n > 0 there exists a unique pair (q, r) ∈ Z2

such that a = qn + r and 0 ≤ r < n.
We denote r = a mod n and have q =

⌊ a
n

⌋
.
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Two Notations for “mod”

without parentheses: x mod n
→ a two-adic operator
= remainder in the Euclidean division of x by n
with parentheses: a ≡ b (mod n)
→ an attribute to an equivalence relation (here: ≡)
means that b − a is divisible by n
or equivalently: a mod n = b mod n
do not mix up

a = b mod n and a ≡ b (mod n)
↑ ↑

a set to (b mod n) a and b are (equal modulo n )
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Zn for Dummies
Zn = {0, 1, . . . , n − 1}
addition in Zn: a ⊞ b = (a + b) mod n
multiplication in Zn: a ⊠ b = (a× b) mod n
useful lemma: (a + (b mod n)) mod n = (a + b) mod n
useful lemma: (a× (b mod n)) mod n = (ab) mod n
⊞ and ⊠ closure: comes from x mod n ∈ Zn for any x ∈ Z
⊞ associativity: comes from the lemma:

a ⊞ (b ⊞ c) = (a + ((b + c) mod n)) mod n = (a + b + c) mod n...

⊠ associativity: comes from the lemma:

a ⊠ (b ⊠ c) = (a× ((bc) mod n)) mod n = (abc) mod n...

neutral elements: 0 for ⊞ and 1 for ⊠
invertibility for ⊞: (−a) mod n, comes from the lemma:

a⊞((−a) mod n) = (a+((−a) mod n)) mod n = (a−a) mod n = 0

distributivity: comes from the lemma:

a ⊠ ((b + c) mod n) = (a× (b + c)) mod n = (ab + ac) mod n...
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Definition of a Group

Definition
A group is a set G together with a mapping from G ×G to G which
maps (a, b) to an element denoted a⊙ b and such that

1. [closure] for any a,b ∈ G, we have a⊙ b ∈ G
2. [associativity] for any a, b, c, we have (a⊙ b)⊙ c = a⊙ (b ⊙ c)
3. [neutral element] there exists an element e s.t. for any a,

a⊙ e = e ⊙ a = a
4. [invertibility] for any a there exists b s.t. a⊙ b = b ⊙ a = e

Definition
An Abelian group is a set G together with a mapping from G ×G to
G which maps (a,b) to an element denoted a⊙ b and such that

1–4. [group] it is a group
5. [commutativity] for any a, b we have a⊙ b = b ⊙ a
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Additive vs Multiplicative Notations for Groups

additive notations multiplicative notations
group (G,+) (G,×)
operation a + b ab
neutral element 0 1
inverse −a a−1

exponential n.a an

(a and b are group elements; n is an integer)
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Group Homomorphism

Homomorphism: given two groups (G1,×1) and (G2,×2), a
mapping f from G1 to G2 is a group homomorphism if
for any a,b ∈ G1

f (a×1 b) = f (a)×2 f (b)

Example: If g ∈ G, the mapping φ : Z −→ G defined by
φ(a) = ga is a group homomorphism.
∀a, b ∈ Z φ(a + b) = φ(a)φ(b)

Isomorphism: a group homomorphism which is bijective is called an
isomorphism

isomorphism = change of notation
Property: A group homomorphism is injective iff
∀a ∈ G1 f (a) = 1 =⇒ a neutral in G1
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Group Constructions: Subgroups

Subgroups: given (G,×), and given H ⊆ G which is nonempty and
stable by × and inversion, consider (H,×)

Example:
5Z = {. . . ,−15,−10,−5, 0, 5,10, 15, . . .} is a subgroup of Z
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Subgroups of Z

Theorem
If H is a subgroup of Z not reduced to {0}, then H = nZ where n is
the smallest positive element of H.

Proof.
let a ∈ H and write a = qn + r with q, r ∈ Z and 0 ≤ r < n
(Euclidean division)
since H is a group and a, n ∈ H we have r = a− qn ∈ H
since 0 ≤ r < n and n is the smallest positive element of H we
must have r = 0, thus a = qn ∈ nZ
therefore, H ⊆ nZ
conversely, rn must be in H for all r ∈ Z, therefore H = nZ

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 127 / 1037



Generators

Given a group (G, .), an element g generates/spans a subgroup
⟨g⟩ = {. . . , g−2, g−1, g0, g1, g2, . . .}

If ⟨g⟩ is finite, of cardinality n, then gn = 1 and
⟨g⟩ = {g0,g1, . . . ,gn−1}

(see next slide)
if x ∈ ⟨g⟩, logg x is uniquely determined up to some multiple of n:

logg x is an element of Zn

i 7→ g i is a group isomorphism between Zn and ⟨g⟩
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Finite Groups and Orders

Definition
If (G, .) is a group and if G is a finite set, then the cardinality of G is
called the group order.
If g generates a subgroup of order n, then n is called the order of g.

Proposition

The order of g is the smallest i > 0 s.t. g i = 1.

Proof.
the set of all i ∈ Z such that g i = 1 is a subgroup of Z
(preimage of subgroup {1} by group homomorphism i 7→ g i ...)
it must be of form nZ where n is the smallest among all i > 0
{1, g,g2, . . . , gn−1} is a non-repeating exhaustive list of all ⟨g⟩
elements
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Consequence

if g is of order n...
then ⟨g⟩ = {1, g, g2, . . . , gn−1}
∀i g i = 1⇐⇒ n|i
∀i , j g i = g j ⇐⇒ i ≡ j (mod n)
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Group Constructions: Product Groups

Product groups: given (G1,×1) and (G2,×2), consider G = G1 ×G2
and (a1,a2)× (b1, b2) = (a1 ×1 b1,a2 ×2 b2)

Power groups: given (G, .) and I, consider GI and
(ai)i∈I × (bi)i∈I = (ai .bi)i∈I

Example:
C∗ × {−1,+1} = {(z, s); z ∈ C∗, s = ±1} with
(z, s)× (z ′, s′) = (zz ′, ss′)
Z{a,b,c} is the set of mappings from D = {a, b, c} to Z with f + g
defined by (f + g)(x) = f (x) + g(x)
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Functional vs Family Notations for Power Sets

functional notations family notations
function domain D index set I
function range R set S

finite domain f : {1, . . . , n} → R (x1, . . . , xn)
infinite domain f : D → R (xi)i∈I
input x ∈ D i ∈ I
image f (x) ∈ R xi ∈ S
set RD SI or Sn
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Group Constructions: Quotient Groups

Quotient groups: given a commutative group G and a subgroup H,
consider the set G/H of classes for congruence
modulo H with the law induced by +

a and b in G are said to be congruent modulo H if b − a ∈ H
notation: a ≡ b (mod H)

the relation “...is congruent to ... modulo H” is an equivalence
relation (reflexive, symmetric, transitive)
notation: for a ∈ G, a + H is the set of all G elements which can
be written a + h for some h ∈ H (elements congruent to a)
every class of equivalence can be written a + H for some a ∈ G
a is called a representative for the class
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Quotient of an Abelian Group by a Subgroup

0 a + c b

a c a + b

x a + c + x b + x

a + x c + x a + b + x

y a + c + y b + y

a + y c + y a + b + y

x + y

H

a + H

b + H

a + b + H

(a + H) + (b + H) = (a + b) + H
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Quotient Example: Z/6Z

0 5 2

1 4 3

6x 5 + 6x 2 + 6x

1 + 6x 4 + 6x 3 + 6x

6y 5 + 6y 2 + 6y

1 + 6y 4 + 6y 3 + 6y

6x + 6y

6Z

1 + 6Z

2 + 6Z

3 + 6Z

Z/H = {H, 1 + H, 2 + H, 3 + H,4 + H, 5 + H}

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 135 / 1037



Lagrange Theorem

Theorem (Lagrange)

In any finite group, the order of any element is a factor of the order of
the group.

Proof.
in G/⟨g⟩, all a + ⟨g⟩ have same number of elements so #G (the order
of G) is divisible by #⟨g⟩ (the order of g)

Consequence

∀g ∈ G g#G = 1
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Application: Generators in a Group of Prime Order

Theorem
if G has prime order, all elements (except 1) are generators

Proof.
let p be the order of G
an element x ∈ G such that x ̸= 1 has an order n > 1
due to the Lagrange Theorem, n|p, so n = p since p is prime
g0, . . . ,gn−1 must be pairwise different, so n ≤ p
so n = p: g must generate G
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The Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g (g is public)

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−→

Y←−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x K ← X y

(K = gxy )

security requirement: given (g,gx , gy ), it must be hard to compute
gxy (Computational Diffie-Hellman Problem)
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Using the Diffie-Hellman Key Agreement Protocol

allows to set up a secret key over a public channel
(assuming authentication)
no further need to set up pre-shared keys: sets up keys when
needed
→ public-key cryptography

Example of Diffie-Hellman groups:
Z∗p (compute gx mod p)
elliptic curves
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2 Diffie-Hellman Cryptography
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Addition with Big Numbers (in Decimal)

1 1 1

8 427 403
+ 12 951 842
= 21 379 245

Input: two integers a and b of ℓ digits
Output: one integer c = a + b
1: r ← 0
2: for i = 0 to ℓ− 1 do
3: d ← ai + bi + r
4: write d = 10r + ci with ci < 10
5: end for
6: cℓ ← r
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Addition in Binary

1 + 1 = 10

1 1

1 001 001
+ 10 011 000
= 11 100 001

Input: a and b, two integers of at most ℓ bits
Output: c, an integer of at most ℓ+1 bits representing

a + b
Complexity: O(ℓ)
1: r ← 0
2: for i = 0 to ℓ− 1 do
3: d ← ai + bi + r
4: set ci and r to bits such that d = 2r + ci

5: end for
6: cℓ ← r

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 142 / 1037



Addition (Binary/Hexadecimal/Decimal)

1 0 1 0 1 0 0 0x54 (84)
+ 1 0 0 1 0 0 1 0 0x92 (146)
= 1 1 1 0 0 1 1 0 0xe6 (230)

hexadecimal = compact way to represent bistrings
(bits groupped into “nibbles” = packets of 4 bits)
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Definition of a Monoid

Definition
A monoid is a set G together with a mapping from G ×G to G which
maps (a, b) to an element denoted a + b and such that

1. [closure] for any a,b ∈ G, we have a + b ∈ G
2. [associativity] for any a, b, c, we have (a + b) + c = a + (b + c)
3. [neutral element] there exists an element 0 s.t. for any a,

a + 0 = 0 + a = a

multiplication of a positive integer n by a monoid element a:

n.a = a + a + · · ·+ a︸ ︷︷ ︸
n times
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Multiplication

we want to multiply a monoid element (a = 12) by an integer
(n = 100101 in binary):

12× 100101
= 12×

(
1× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 2 + 1

)
= 12×

(
25 + 22 + 1

)
= 12× 25 + 12× 22 + 12× 1

multiplication by 2 consists of adding to itself
(= a shift left for addition over the integers in binary)
multiplication by 2i consists of multiplying i times by 2
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Multiplication Algorithm

12× 100101 = 444

1 1 0 0 0x00c (12)
× 1 0 0 1 0 1 0x025 (37)

1 1 0 0 0x00c (12)
+ 0 0 0 0 0x000 (0)
+ 1 1 0 0 0x030 (48)
+ 0 0 0 0 0x000 (0)
+ 0 0 0 0 0x000 (0)
+ 1 1 0 0 0x180 (384)
= 1 1 0 1 1 1 1 0 0 0x1bc (444)

�444
?

3841

� +

DB �
192

0 DB �
96
0 DB �

�+
?

60

48
1 DB �

24
0 DB �

+�?
12 0

121
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Double-and-Add From Right to Left

Input: a in monoid, n integer of at most ℓ bits
(n in binary)

Output: c = a× n
Complexity: O(ℓ) monoid additions

1: x ← 0
2: y ← a
3: for i = 0 to ℓ− 1 do
4: if ni = 1 then
5: x ← x + y
6: end if
7: y ← y + y
8: end for
9: c ← x
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From Left to Right

12× 100101 = 444

0 -DB -+-
0 12

12

?

1

DB -
24

0

DB -
48

0

DB -+-
96 108

?

1

DB -
216

0

DB -+-
432 444

?

1

12× 1

12× 10

12× 100

12× 1001

12× 10010

12× 100101
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Double-and-Add From Left to Right

Input: a in monoid, n integer of at most ℓ bits
(n in binary)

Output: c = a× n
Complexity: O(ℓ) monoid additions

1: x ← 0
2: for i = ℓ− 1 to 0 do
3: x ← x + x
4: if ni = 1 then
5: x ← x + a
6: end if
7: end for
8: c ← x
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From Double-and-Add to Square-and-Multiply

if we can compute a monoid law a + b in O(T ) then we can
compute n.a for n ∈ N in O(T log n) instead of O(Tn) by trivial
algorithm

Example:
monoid (Z,+): a positive integer multiplied by a Z element
monoid (EC,+): an integer multiplied by a point
monoid (Zm,×): a Zm element raised to some integral power

Same with multiplicative notation:
if we can compute a monoid law ab in O(T ) then we can
compute an for n ∈ N in O(T log n)
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Definition of a Ring
Definition
A ring is an Abelian group (R,+) together with a mapping from R×R
to R which maps (a, b) to an element denoted ab and such that
1-4. [group] R with + is a group

5. [Abelian] for any a, b, we have a + b = b + a
6. [closure] for any a,b ∈ R, we have ab ∈ R
7. [associativity] for any a, b, c, we have (ab)c = a(bc)
8. [neutral element] there exists 1 s.t. for any a, a1 = 1a = a
9. [distributivity] for any a, b, c, we have a(b + c) = ab + ac and

(a + b)c = ac + bc

Definition
A commutative ring is a ring R such that

1–9. [ring] it is a ring
10. [commutativity] for any a, b we have ab = ba
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Group of Units

not every element x in a ring R has an inverse for the
multiplication
we denote by R∗ the set of elements having a multiplicative
inverse
those elements are called units
R∗ with the multiplication is a group
this is the group of units of the ring R

common mistake: R∗ = R − {0}
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Group and Ring Constructors

sub-structure (sub-group, ideal)
subgroup: subset of a group stable by group law and inversion
ideal: subgroup of a ring stable by multiplication by any ring
element
spanned structure
set of all values generated by structure operations
product structure
set of pairs with inherited structure operations
power structure
set of tuples / set of functions of given domain with range in
structure
quotient (Abelian group by a subgroup, ring by an ideal)
structure induced by grouping “equivalent” elements
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Example: Z with addition

Z = {. . . ,−3,−2,−1, 0,1, 2, 3, . . .}

1. Z is closed for the addition
2. the addition is associative in Z
3. 0 is neutral for the addition
4. for any a ∈ Z we have −a ∈ Z which is the inverse of a for

addition
5. the addition is commutative in Z
6. Z is closed for the multiplication
7. the multiplication is associative in Z
8. 1 is neutral for the multiplication
9. addition is distributive for multiplication

10. the multiplication is commutative in Z

Z is a commutative ring of infinite size
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Example: Z[X ]

Z[X ] = set of polynomials with coefficients in Z

example: (5X 3− 3X 2 +X − 4) + (X 2− 2X + 1) = 5X 3− 2X 2−X − 3
1-5. Z[X ] with the addition is an Abelian group (isomorphic to Z(N))

6. Z[X ] is closed under multiplication
7. multiplication is associative in Z[X ]

8. the constant polynomial 1 is neutral for the multiplication
9. distributivity: we have

A(X )(B(X ) + C(X )) = A(X )B(X ) + A(X )C(X ) for all
A(X ),B(X ),C(X ) ∈ Z[X ]

10. multiplication is commutative in Z[X ]

Z[X ] is a commutative ring of infinite size

(same for R[X ] for any commutative ring R)
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Example: Modulo 9 Reduction of Large Numbers

296 527 mod 9
= (200 000 + 90 000 + 6 000 + 500 + 20 + 7) mod 9
= (2× 100 000 + 9× 10 000 + 6× 1 000 + 5× 100 + 2× 10 + 7) mod 9
= (2× 105 + 9× 104 + 6× 103 + 5× 102 + 2× 10 + 7) mod 9
= (2× (10 mod 9)5 + 9× (10 mod 9)4 + 6× (10 mod 9)3 +

+5× (10 mod 9)2 + 2× (10 mod 9) + 7) mod 9
= (2× 15 + 9× 14 + 6× 13 + 5× 12 + 2× 1 + 7) mod 9
= (2 + 9 + 6 + 5 + 2 + 7) mod 9
= 31 mod 9
= (3 + 1) mod 9
= 4 mod 9
= 4
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“Preuve par 9”

mod9
5 2 6 4

× 2 8 × 1
4 2 0 8

+ 1 0 5 2
1 4 7 2 8 4
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Example: the Ring of Residues Modulo n

Zn = {0, 1, 2, 3, . . . , n − 1}

1. Zn is closed for the addition modulo n
2. the addition modulo n is associative in Zn (next slides)
3. 0 is neutral for the addition
4. for any nonzero a ∈ Zn we have n − a ∈ Zn which is the inverse

of a for addition modulo n (0 is self-inverse)
5. the addition modulo n is commutative in Zn

6. Zn is closed for the multiplication modulo n
7. the multiplication modulo n is associative in Zn

8. 1 is neutral for the multiplication
9. addition modulo n is distributed over multiplication modulo n

(next slides)
10. the multiplication modulo n is commutative in Zn

Zn is a commutative ring of n elements
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Cerebral Zn

nZ is an ideal of Z (with laws + and ×) (ideal generated by n)
we can do the quotient Z/nZ of Z by nZ
congruence modulo nZ is written

a ≡ b (mod n) ⇐⇒ a− b ∈ nZ ⇐⇒ a mod n = b mod n

an exhaustive list of equivalence classes is

0 + nZ , 1 + nZ , 2 + nZ , . . . , (n − 1) + nZ

note that (a + nZ) + (b + nZ) = ((a + b) mod n) + nZ
note that (a + nZ)× (b + nZ) = ((a× b) mod n) + nZ
we simply write a (the representative in [0, n − 1]) instead of
a + nZ
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Zn Tips

for any polynomial P(x) ∈ Z[x ] and any a, n ∈ Z we have

P(a) mod n = P(a mod n) mod n

can put “modn” reductions in the ground floor
if x has order m in Z∗n then for any i ∈ Z

x i mod n = x i mod m mod n

can put “modm” reductions in the upper floor
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Exercise

Z15 has order 15
We have ⟨5⟩ = {0, 5,10}.
This is a subgroup of order 3
5 has order 3 in Z15

in Z15: ⟨2⟩ = {0, 2, 4, 6, 8, 10, 12, 14,1, 3, 5, 7, 9, 11, 13}.
in Z15, 2 has order 15 (so, 2 is a generator)
We have ⟨1⟩ = Z15
1 is a generator
Z∗15 = {1,2, 4, 7,8, 11, 13,14}
in Z∗15, 2 has the order 4: ⟨2⟩ = {1,2, 4, 8}
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Zn Computations

Efficiently computable operations:
addition: (a + b) mod n
multiplication: (a× b) mod n (double-and-add)
modulo: a mod n (Euclidean division)
inverse: a−1 mod n (when gcd(a,n) = 1) (extended Euclid
algorithm)
power: ae mod n (for e integer only) (square-and-multiply)

Remaining problem: extracting roots: e
√

a mod n (or ar mod n for r
rational)

SV 2016–17 Diffie-Hellman Cryptography CryptoSec 163 / 1037



Addition in Zn

Input: an integer n of ℓ bits, two integers a and
b less than n

Output: c, an integer which represents a +
b mod n

Complexity: O(ℓ)
1: add a and b in c
2: compare c and n
3: if c ≥ n then
4: subtract n from c
5: end if

remark: comparison and subtraction take O(ℓ) time as well
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Multiplication in Zn From Left to Right

Input: an integer n of ℓ bits, a, b ∈ Zn
(b in binary)

Output: c = a× b mod n
Complexity: O(ℓ2)

1: x ← 0
2: for i = ℓ− 1 to 0 do
3: x ← x + x mod n
4: if bi = 1 then
5: x ← x + a mod n
6: end if
7: end for
8: c ← x
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Exponentiation From Left to Right
Square-and-Multiply

Input: a and n, two integers of at most ℓ bits, an
integer e (e in binary)

Output: x = ae mod n
Complexity: O(ℓ2 log e)

1: x ← 1
2: for i = log e − 1 to 0 do
3: x ← x × x mod n
4: if ei = 1 then
5: x ← x × a mod n
6: end if
7: end for
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Euclidean Division

we can just adapt the algorithm we have learnt at school
(not trivial to implement!)

for any a ∈ Z and n > 0 there exists a unique pair (q, r) ∈ Z2

such that a = qn + r and 0 ≤ r < n
q =

⌊ a
n

⌋
and r = a mod n

algorithm runs in O(ℓ2)
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Modular Inversion

Theorem
x ∈ Zn is invertible if and only if gcd(x , n) = 1.

Proof.
=⇒ if gcd(x , n) = d > 1 then d divides (x · y) mod n for any y so
(x · y) mod n ̸= 1 and x is non invertible.
⇐= to be seen later
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Euclid Algorithm

Input: a and b, two integers of at most ℓ bits
Output: d = gcd(a, b)
Complexity: O(ℓ2)

1: x ← a, y ← b
2: while y > 0 do
3: make an Euclidean division x = qy + r
4: do simultaneously x ← y and y ← x − qy
5: end while
6: d ← x
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Example
We run the algorithm with a = 22 and b = 35. We obtain the following
sequence.

iteration x y q
0 22−35×0

↙ =

1 35−22×1
↙ =

2 22−13×1
↙ =

3 13− 9 ×1
↙ =

4 9 − 4 ×2
↙ =

5 4 − 1 ×4
↙ =

6 1 0

Thus gcd(22,35) = 1.
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Why does it Work?

it eventually stops (y strictly decreases and y ≥ 0)
a divisor of x and y is a divisor of x − qy for all q
x = (x − qy)− (−q)y
d divides x and y ⇐⇒ d divides y and x − qy
for any q, gcd(x , y) = gcd(y , x − qy)
gcd(x , 0) = x
conclusion: the algorithm terminates with gcd(a, b)
to be discussed (in another course): runing time (complexity) is
quadratic
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Extended Euclid Algorithm

Input: a and b, two integers of at most ℓ bits
Output: d , u, v such that d = au + bv =

gcd(a, b)
Complexity: O(ℓ2)

1: x⃗ ← (a, 1, 0), y⃗ ← (b, 0, 1)
2: while y1 > 0 do
3: make an Euclidean division x1 = qy1 + r
4: do simultaneously x⃗ ← y⃗ and y⃗ ← x⃗ − qy⃗
5: end while
6: (d , u, v)← x⃗

x⃗ , y⃗ ∈ {(α, β, γ);α = a · β + b · γ}
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Example
We run the algorithm with a = 22 and b = 35. We obtain the following
sequence of vectors.

iteration x⃗ y⃗ q
0 (22, 1, 0) − (35,0, 1) ×0

↙ =

1 (35, 0, 1) − (22,1, 0) ×1
↙ =

2 (22, 1, 0) − (13,−1, 1) ×1
↙ =

3 (13,−1,1)− (9, 2,−1) ×1
↙ =

4 (9, 2,−1) − (4,−3, 2) ×2
↙ =

5 (4,−3,2) − (1, 8,−5) ×4
↙ =

6 (1, 8,−5) (0,−35, 22)

Thus 1 = 22× 8− 35× 5.
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Modular Inversion

to compute the inverse of x modulo n:
1 run the Extended Euclid algorithm with input (x , n) and get u, v

such that ux + vn = d = gcd(x , n)
2 if d ̸= 1, x is not invertible: error!
3 output u: it is such that ux mod n = 1
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Modular Inversion

Theorem
x ∈ Zn is invertible if and only if gcd(x , n) = 1.

Proof:
⇒: already seen (slide 168)
⇐: if gcd(x , n) = 1, run the Extended Euclid algorithm and get
an equation ux + vn = 1 then deduce ux mod n = 1

Conclusion: the Extended Euclid algorithm is an inversion algorithm
with complexity O(ℓ2)
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Arithmetics with Big Numbers

addition (O(ℓ)): x , y 7→ x + y
multiplication (O(ℓ2)): x , y 7→ x × y
Euclidean division (O(ℓ2)): x , n 7→ x mod n

Euclid Algorithm (O(ℓ2)): x , y 7→ u, v s.t. ux + vy = gcd(x , y)
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Modular Arithmetic

addition (O(ℓ)): x , y , n 7→ (x + y) mod n
multiplication (O(ℓ2)): x , y , n 7→ (x × y) mod n
modulo (O(ℓ2)): x , n 7→ x mod n

fast exponential (O(ℓ2 log e)): x , e, n 7→ xe mod n
inversion in Zn (O(ℓ2)): x , n 7→ y s.t. xy mod n = 1 (when
feasible)
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FFT-based Multiplication

we could have better complexities with a better multiplication
algorithm
in this lecture, we limit to the values form the school-book
algorithm
in practice, this algorithm is sufficient for the lengths we use
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Definition of a Field

Definition
A field is a commutative ring (K ,+,×) such that
1-9. [ring] K is a ring with + and ×
10. [commutativity] for any a, b, we have ab = ba
11. [invertibility] for any a ̸= 0 there exists b = a−1 s.t. ab = ba = 1
example:

Q, R, C
Zp for p prime (next slide)
GF(2n) (in Chapter 4)
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Zp Properties

Theorem (Zp structure)

Let p be a prime number.
1 Z∗p = {1, . . . , p − 1}
2 (Little Fermat Theorem) for any x ∈ Z∗p, we have xp−1 ≡ 1

(mod p)
3 Z∗p is a cyclic group. So, there exist g such that

Z∗p = {g0,g1,g2 mod p, . . . , gp−2 mod p}
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Proof

1 if 1 ≤ x ≤ p − 1, since p is prime, we must have gcd(x , p) = 1
thus x ∈ Z∗p

2 due to the Lagrange Theorem, for any x ∈ Z∗p, we have xp−1 ≡ 1
(mod p)

3 (hard)
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To Be Seen Later

we can generate large prime numbers
we can verify the primality of a number
we can find generators in Z∗p
we can find (p,q,g) such that p and q are prime, q divides p − 1,
and g has order q in Z∗p
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The Discrete Logarithm Problem

(implicit: a parameter generator)

Discrete Logarithm (DL) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Instance: y , power of g
Problem: find x such that y = gx

Examples:
Zn: easy (use the Extended Euclid algorithm)
Z∗p: (maybe) hard
over an elliptic curve: (maybe) hard
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Some Facts About The Discrete Logarithm
Problem

in a group of order n:
easy on a quantum computer:

Shor algorithm

easy if n has only small prime factors:
Pohlig-Hellman algorithm

best algorithm for a subgroup of Z∗p with n and p prime:
General Number Field Sieve (GNFS) with complexity

e

(
3
√

64
9 +o(1)

)
(ln n)

1
3 (ln ln n)

2
3

this is mostly precomputation (without y )

the computation from y takes e
(

3
√

3+o(1)
)
(ln n)

1
3 (ln ln n)

2
3

generic algorithms in O(
√

n):
baby-step giant-step algorithm
Pollard ρ algorithm
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Attacks based on Precomputation

over Z∗p, the discrete logarithm can be solved in

p length precomputation attack
(bits) (core-time) (core-time)
512 10.2 years 10 minutes
768 36 500 years 2 days

1 024 45 000 000 years 30 days

remember SSH2 uses a fixed p of 1 024 bits...
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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The Diffie-Hellman Key Agreement Protocol (again)

Assume a group generated by some g

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−→

Y←−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x K ← X y

(K = gxy )

security requirement: given (g,gx , gy ), it must be hard to compute
gxy (Computational Diffie-Hellman Problem)
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Passive Adversaries

passive adversary: just listens to communications and tries to
decrypt communications (e.g. by recovering the key)
the Diffie-Hellman shall resist to passive attacks: given only g, X ,
and Y , it must be hard to compute K
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The Computational Diffie-Hellman Problem

(implicit: a parameter generator)

Computational Diffie-Hellman (CDH) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Instance: X ,Y ∈ ⟨g⟩
Problem: find K = gxy where X = gx and Y = gy

hardness requires the Discrete Logarithm Problem to be hard (see
next slide)
Examples:

a subgroup of Z∗p of prime order q
an elliptic curve
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DL =⇒ CDH
The CDH Problem Reduces to the DL Problem

X ,Y - CDHparms - K

y
�	

x

DLparms

parms→ (g, n)
set y = X
submit y
get x
compute K = Y x
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Problems with the Original Diffie-Hellman Protocol

problems with subgroups of ⟨g⟩
subgroup {1} (unavoidable): if either X or Y is 1, then K = 1 for
sure
other subgroups (avoidable): the discrete logarithm problem may
become easy in subgroups

problem with gxy having a bad distribution
(elements in ⟨g⟩ may be sparse, so there is a structured
information in gxy )
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Correct Diffie-Hellman Key Exchange

Assume a group ⟨g⟩ generated by some g of prime order q

Alice Bob

pick x ∈ Z∗q , X ← gx X−−−−−−−−−−−−→ if X ̸∈ ⟨g⟩ − {1}, abort

if Y ̸∈ ⟨g⟩ − {1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q , Y ← gy

K ← KDF(Y x) K ← KDF(X y )
(K = KDF(gxy ))

KDF: a Key Derivation Function
since Z∗q is cyclic,

if Bob is honest, his X y is uniformly distributed in ⟨g⟩ − {1}
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RFC 2631
Diffie-Hellman Key Agreement Method

group parameters (p, q, g) (meant to be defined by a CA): p
prime, q prime, q divides p − 1, g = h

p−1
q mod p, h is random

such that 1 < h < p − 1 and g > 1
secret keys: xA, xB between 1 and q − 1
public keys: yA = gxA mod p, yB = gxB mod p
3 modes:

ephemeral-ephemeral mode: both keys are fresh
ephemeral-static mode: recipient uses a static public key
static-static mode: both participants use a static public key

shared secret: ZZ = gxAxB mod p
(ZZ is the notation from the RFC, sorry!)
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Exercise

group parameters (p, q, g) (meant to be defined by a CA): p
prime, q prime, q divides p − 1, g = h

p−1
q mod p, h is random

such that 1 < h < p − 1 and g > 1

Show that g generates a subgroup of Z∗p of order q.
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Key Wrapping in RFC 2631

Objective: make a key transfer protocol based on Diffie-Hellman
Alice wants to send a content-encryption key CEK to Bob

keying material: KM = SHA1(ZZ∥OtherInfo)
OtherInfo includes algorithm, counter (we can generate many
KM blocks from the same ZZ), some ad-hoc string and the length
of the KEK to generate
key-encryption key: KEK = trunc(KM1∥KM2∥ · · · )
to tranfer CEK: send EncKEK(CEK) (key wrap)
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Example: Semi-Authenticated Key Exchange in
SSH2

IC and IS: negotiation of crypto algorithms
KS: public key of the server (may come with a certificate)
for diffie-hellman-group1-sha1 key exchange:
p = 21024 − 2960 − 1 + 264

⌊
2894π + 129093

⌋
, g = 2, q = p−1

2

Client Server

version VC , initial message IC
VC ,IC−−−−−−−−−−−−→
VS ,IS←−−−−−−−−−−−− version VS , initial message IS

pick x , e = gx mod p e−−−−−−−−−−−−→
pick y , f = gy mod p, K = ey mod p
H = hash(VC ||VS ||IC ||IS ||KS ||e||f ||K )

KS ,f ,s
←−−−−−−−−−−−− s = Sig(H) (DSA usig p, q, g)

K = f x mod p, check KS
H = hash(VC ||VS ||IC ||IS ||KS ||e||f ||K )

VerKS
(s, H)
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Parameter Validation in RFC 2631

p and q are prime, gq mod p = 1
group parameters validation: q divides p − 1, and (optional) p
and q follow parameter generation algorithm from seed and
counter
public key validation: 2 ≤ y ≤ p − 1, yq mod p = 1
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An Interesting Result

(⟨g⟩ is the unique subgroup of Z∗p of order q)

Theorem
Let p, q, g be integers such that p and q are prime, q divides p − 1,
g mod p ̸= 1, and gq mod p = 1. Then
⟨g⟩ is a subgroup of Z∗p of order q
⟨g⟩ = {y ∈ Z∗p; yq mod p = 1}

Application to RFC 2631: we can check that y is in the group
generated by g by checking yq mod p = 1
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Proof

⟨g⟩ is a subgroup of Z∗p of order q: clear
⟨g⟩ ⊆ {y ∈ Z∗p; yq mod p = 1}: clear
⟨g⟩ ⊇ {y ∈ Z∗p; yq mod p = 1}:
let y ∈ Z∗p be such that yq mod p = 1

let θ ∈ Z∗
p be a generator of Z∗

p , write g = θa mod p, y = θb mod p
since gq ≡ yq ≡ 1 (mod p), we have qa ≡ qb ≡ 0 (mod p − 1)
so, we can write a = p−1

q a′ and b = p−1
q b′ with a′, b′ ≤ q

since g mod p ̸= 1, we have 1 ≤ a′ < q
since q is prime, there exists c such that a′c mod q = 1
we have

gb′c ≡ θab′c ≡ θa′bc ≡ ya′c ≡ y1+kq ≡ y (mod p)

so, y ∈ ⟨g⟩
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Group Parameter Generation in RFC 2631
1: m = required length for q, m′ = ⌈ m

160⌉
2: repeat
3: pick a random seed
4: U =

∑m′−1
i=0 2160i (SHA1(seed + i)⊕ SHA1(seed + m′ + i))

5: q = U OR 1 OR 2m

6: until q is prime
7: L = required length for p, L′ = ⌈ L

160⌉
8: counter = 0
9: repeat

10: R = seed + 2m′ + (L′ ∗ counter)
11: W =

(∑L′

i=0 2160iSHA1(R + i)
)

mod 2L

12: X = W OR 2L−1

13: p = X − (X mod (2q)) + 1
14: counter← counter + 1
15: if counter ≥ 4096N then abort (fail)
16: until p > 2L−1 and p is prime
17: output p, q, seed, counter
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2 Diffie-Hellman Cryptography
Arithmetics and Zn
Some Notions of Groups Theory
Algorithms for Big Numbers
Zn: The Ring of Residues Modulo n
The Zp Field
The Diffie-Hellman Key Exchange, Concretely
The ElGamal Public-Key Cryptosystem
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Public-Key Cryptosystem

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary
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Non-Deterministic Encryption

Encrypt Decrypt

Plaintext set Ciphertext set Plaintext set
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Semi-Static-DH to Public-Key Encryption
Towards ElGamal Encryption

Alice Bob
input: m secret key: y

public key: Y = gy

Y←−−−−−−−−−−−−

pick x at random
X = gx X−−−−−−−−−−−−→ K = KDF(X y )

K = KDF(Y x)

c = symEncK (m)
c−−−−−−−−−−−−→ m = symDecK (c)

output: m
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The Plain ElGamal Encryption Case

no KDF
symEnc is one-time-pad, adapted in the DH group
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ElGamal Cryptosystem

Public parameters: (g, n), a group ⟨g⟩ of order n generated by
some g

Set up: generate a random x ∈ Zn, and compute y = gx

Message: an element m ∈ ⟨g⟩
Public key: Kp = y
Secret key: Ks = x
Encryption: pick a random r ∈ Zn, compute u = gr , and v = my r

The ciphertext is (u, v)
Decryption: extract the u and v parts of the ciphertext and compute

m = vu−x
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ElGamal Cryptosystem
Semi-Static DH + Vernam Generalized

Alice Bob
input: m secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = mK v−−−−−−−−−−−−→ m = vK−1

output: m
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Plain ElGamal Encryption

Generator

6Secret key xPublic key y 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

(gr , my r )
-

(u, v)
Decrypt -Message

vu−x

�
�

Adversary

y = gx

6
?

domain parameters:
g: a group generator

n: order of g

(assume m ∈ ⟨g⟩)
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ElGamal Encryption Complexity

in subgroups of Z∗p with p of length ℓ:

Domain parameter selection: O(ℓ4)
(prime numbers generation to be seen in next chapter)
Generator: O(ℓ3)

Encryption: O(ℓ3)

Decryption: O(ℓ3)
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ElGamal Security: ElGamal Problems
(implicit: a parameter generator)

ElGamal Decryption (EGD) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Input: (y , u, v) such that y ,u, v ∈ ⟨g⟩.

Problem: compute m such that there exists r such that u = gr

and v = my r .

ElGamal Key Recovery (EGKR) Problem

Parameters: G, a group, g ∈ G and n, the order of g
Input: y such that y ∈ ⟨g⟩.

Problem: compute x such that y = gx .

decryption problem ⇐⇒ Diffie-Hellman problem
key recovery problem = discrete logarithm problem
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CDH =⇒ EGD
The EGD Problem Reduces to the CDH Problem

y , u, v - EGDparms - m

X ,Y
�	

K

CDHparms

parms→ (g, n)
set X = u and Y = y
submit (X ,Y )

get K (this should be gxr )
compute m = v/K
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EGD =⇒ CDH
The CDH Problem Reduces to the EGD Problem

X ,Y - CDHparms - K

y , u, v
�	

m

EGDparms

parms→ (g, n)
set u = X , y = Y , pick a random v ∈ ⟨g⟩
submit (y , u, v)
get m
compute K = v/m
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ElGamal Encryption Security

key recovery is equivalent to the discrete logarithm problem
decryption is equivalent to the Diffie-Hellman problem
some tricky things about the selection of groups
(left for another course)
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Conclusion

Zn ring, Zp field: a nice playground for cryptography
algorithmic number theory: easy to add multiply, invert,
compute exponentials in Zn and Zp

DL and CDH problems: some cryptosystems based on their
hardness
Diffie-Hellman key exchange: can set up a symmetric key over
a public channel, resist to passive adversaries
ElGamal encryption: an example of probabilistic cryptosystem
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Must be Known
groups, rings, fields:

orders
Lagrange Theorem

Zn ring: invertibility
Zp field: the multiplicative group is cyclic
algorithmic number theory:

square-and-multiply
extended Euclid algorithm

Diffie-Hellman key exchange:
resist to passive adversaries
man-in-the-middle active adversary
ephemeral or static mode
better on a goup of prime order
requires the hardness of DL

ElGamal encryption:
requires the hardness of CDH
encrypt group elements
better on a group of prime order
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Roadmap

more on number theory
prime number generation
RSA cryptosystem
square roots
factoring problem
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3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem
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Euler Totient Function

φ(n) is the order of Z∗
n

Theorem
Given an integer n, we have the following results.

For all x ∈ Zn we have x ∈ Z∗n ⇐⇒ gcd(x , n) = 1.
Zn is a field⇐⇒ Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1⇐⇒ n is prime
For all x ∈ Z∗n we have xφ(n) ≡ 1 (mod n).
if e is such that gcd(e, φ(n)) = 1, we let d = e−1 mod φ(n). For
all x ∈ Z∗n, xd mod n is the only eth root of x modulo n
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Proof — i

For all x ∈ Zn we have x ∈ Z∗n ⇐⇒ gcd(x , n) = 1.

Proof.
=⇒: if gcd(x ,n) = d > 1, then d divides (x · y) mod n for any y so
(xy) mod n cannot be equal to 1.
⇐=: if gcd(x ,n) = 1, the extended Euclid algorithm constructs an
inverse of x (see slide 175)
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Proof — ii

Zn is a field⇐⇒ Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1⇐⇒ n is prime

Proof. By definition, Zn is a field⇐⇒ Z∗n = Zn\{0}.
Since Z∗n ⊆ Zn\{0}, Z∗n and Zn\{0} are equal iff they have the same
cardinality.
We have #Z∗n = φ(n) and #Zn\{0} = n − 1, so we deduce
Z∗n = Zn\{0} ⇐⇒ φ(n) = n − 1.

Z∗n = Zn\{0} ⇐⇒ ∀x ∈ {1, . . . , n − 1} gcd(x ,n) = 1
⇐⇒ n is prime

(Zn field⇐= n prime was seen on slide 181)
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Proof — iii

For all x ∈ Z∗n we have xφ(n) ≡ 1 (mod n).

Proof. Due to the Lagrange Theorem, the order k of x divides the
order φ(n) of Z∗n.
Let φ(n) = k · r . We have xφ(n) ≡ xk·r ≡ (xk )r ≡ 1r ≡ 1.
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Proof — iv

If e is such that gcd(e, φ(n)) = 1, we let d = e−1 mod φ(n). For all
x ∈ Z∗n, xd mod n is the only eth root of x modulo n

Proof. We have e · d = 1 + k · φ(n) for some k .
y ≡ xd =⇒ ye ≡ x1+k·φ(n) ≡ x so y = xd is a eth root of x .
If x ≡ ye, we have y ∈ Z∗n because(

x−1ye−1) y ≡ 1

we have x ≡ ye =⇒ xd ≡ y1+k·φ(n) ≡ y so a eth root of x must be
unique.

SV 2016–17 RSA Cryptography CryptoSec 232 / 1037



Application: RSA Cryptosystem

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m,n) = 1. For any
a,b ∈ Z, there exists x ∈ Z such that

x ≡ a (mod m)

x ≡ b (mod n)

Furthermore, for all such solution, x mod (mn) is unique.

Example: (m = 5, n = 7, mn = 35, a = 3, b = 4)
We find that x = 18 is a solution and for all solution, x mod (mn) = 18
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Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Let m and n be two integers such that gcd(m,n) = 1. We have
f : Zmn → Zm × Zn defined by f (x) = (x mod m, x mod n) is a
ring isomorphism
f−1(a, b) ≡ an(n−1 mod m) + bm(m−1 mod n) (mod mn)

Example: (m = 5, n = 7, mn = 35)

f−1(3, 4)=
(
3× 7× (7−1 mod 5) + 4× 5× (5−1 mod 7)

)
mod 35

=· · · = 18

Application: φ(pq) = (p − 1)(q − 1) when p and q are two different
primes
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Application 1: Count Soldiers

x ≡ 3 · 11 · (11−1 mod 7) + 9 · 7 · (7−1 mod 11) (mod 77)
≡ 3× 22 + 9× 56 (mod 77)
≡ 31 (mod 77)

... there must be 108 soldiers
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Application 2: Equality Modulo Composite
Numbers

Theorem
For any a, b,m,n ∈ Z such that gcd(m,n) = 1, then

a ≡ b (mod m)
a ≡ b (mod n)

}
⇐⇒ a ≡ b (mod mn).

Indeed, f (a mod (mn)) = f (b mod (mn)) hence
a mod (mn) = b mod (mn)

SV 2016–17 RSA Cryptography CryptoSec 237 / 1037



Application 3: Correctness of RSA

let N = pq be the product of two different prime numbers p and q
for any x ∈ Z such that x mod p ̸= 0 we have
(xe mod N)d mod N ≡ x (mod p)
(comes from p − 1 divides φ(N) thus ed mod (p − 1) = 1)
this also holds when x mod p = 0
similarly: for any x ∈ Z we have (xe mod N)d mod N ≡ x
(mod q)
from CRT (Application 2): for any x ∈ Z we have
(xe mod N)d mod N ≡ x (mod N)

for any x ∈ ZN we have (xe mod N)d mod N = x
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Application 4: Exponentiation Acceleration

log2 p ≈ log2 q ≈ ℓ

2

(y mod q)d mod (q−1) mod q

(y mod p)d mod (p−1) mod p

1

q
CRT - yd mod pq

2×O
((

ℓ
2

)3
)

O
(
ℓ3
)
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Proof of CRT — i

Fact 1: f is a ring homomorphism from Zmn to Zm × Zn

f (x +Zmn y) = f (x) +Zm×Zn f (y)
indeed:

((x + y) mod (mn)) mod m = ((x mod m) + (y mod m)) mod m
((x + y) mod (mn)) mod n = ((x mod n) + (y mod n)) mod n

f (x ×Zmn y) = f (x)×Zm×Zn f (y)
(same)
f (1) = (1, 1)
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Proof of CRT — ii

Fact 2: f is an isomorphism
f (x) = (0, 0) implies m and n divide x
since gcd(m, n) = 1, mn divides x (see next slide)
thus x mod (mn) = 0
f is injective: for all x , y ∈ Zmn, if f (x) = f (y) then
f (x − y) = (0, 0) thus x − y mod (mn) = 0 hence x = y
f is an isomorphism: Zmn and Zm × Zn have the same cardinality
and f is injective thus f is a bijection
since f is further a homomorphism, f is an isomorphism
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Euclid Lemma

Lemma
If p is prime and p divides ab, then p divides a or p divides b.

(Proof with a big hammer: Zp is a field!)

Lemma (Generalization)

If n divides ab and gcd(n, a) = 1, then n divides b.

Consequence: if n and a divide x and gcd(n, a) = 1, then na divides
x .
(take b = x/a)
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Proof of CRT — iii

Fact 3: f (an(n−1 mod m) + bm(m−1 mod n)) = (a,b)

an(n−1 mod m) + bm(m−1 mod n) ≡ a (mod m)

an(n−1 mod m) + bm(m−1 mod n) ≡ b (mod n)

thus f of the left hand side is (a,b)
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CRT Backward: Another Approach

Theorem (CRT Backward)

Let m and n be two integers such that gcd(m,n) = 1. Let
u = n(n−1 mod m) and v = m(m−1 mod n). The function

g : Zm × Zn −→ Zmn
(a, b) 7−→ au + bv mod (mn)

is well defined and is a ring isomorphism.

Note: g is well defined because

g : Z× Z −→ Zmn
(a, b) 7−→ (a + im)u + (b + jn)v mod (mn)

does not depend on i or j
Remark: (u + v) mod (mn) = g(1, 1) = 1
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Proof

g : Zm × Zn −→ Zmn
(a, b) 7−→ au + bv mod (mn)

Proof.
g(a, b) + g(a′, b′) ≡ g(a + a′, b + b′) (mod mn) so g is a group
homomorphism
g(a, b) = 0 implies a mod m = 0 and b mod n = 0 so g is
injective
due to cardinality, g is bijective: so, a group isomorphism
g−1(x) = (x mod m, x mod n) is homomorphic for × so we have
a ring isomorphism
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Euler Totient Function

Corollary

Let m and n be two integers such that gcd(m,n) = 1. We have
φ(mn) = φ(m)φ(n).
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Proof

Fact: f is a bijection from Z∗mn to Z∗m × Z∗n (thus φ(mn) = φ(m)φ(n)):
if x ∈ Z∗mn then f (x).f (x−1) = f (1) = (1, 1) so both components of
f (x) are invertible: f (x) ∈ Z∗m × Z∗n
conversely, if (a, b) ∈ Z∗m × Z∗n, let x = f−1(a, b) and
y = f−1(a−1, b−1)
we have f (xy) = f (x).f (y) = (a, b).(a−1, b−1) = (1, 1) = f (1) so
xy = 1 so x ∈ Z∗mn

f is a bijection from Zmn to Zm × Zn, so a bijection from Z∗mn to
Z∗m × Z∗n

actually, Z∗mn and Z∗m × Z∗n are isomorphic groups (and f is such
isomorphism)
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Computation of Euler Totient Function

φ(p) = p − 1 for p prime
φ(mn) = φ(m)× φ(n) when gcd(m,n) = 1
φ(pa) = (p − 1)pa−1 for p prime

φ
(
pa1

1 × · · · × par
r
)

= (p1 − 1)pa1−1
1 × · · · × (pr − 1)par−1

r

= pa1
1 × · · · × par

r
(p1 − 1)× · · · × (pr − 1)

p1 × · · · × pr

for pairwise different prime numbers p1, . . . ,pr
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Structure Property of Z (Reminder)

(already seen, see slide 127)

Theorem
For all proper subgroup I of Z there exists n such that

I = nZ = {. . . ,−3n,−2n,−n, 0, n, 2n, 3n, . . .}
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Element Order

Given x in a group G:
{i ∈ Z; x i = 1} is a subgroup of Z
so, {i ∈ Z; x i = 1} = nZ for some n which is the smallest positive
n such that xn = 1
n is called the order of x in G.
n is such that

x i = 1⇐⇒ (n divides i)

see slide 128
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Group Exponent

Given a group G:
{i ∈ Z;∀x ∈ G x i = 1} is a subgroup of Z
so, {i ∈ Z;∀x ∈ G x i = 1} = λZ for some λ which is the smallest
positive λ such that ∀x ∈ G, xλ = 1
λ is called the exponent of G.
λ is such that (

∀x ∈ G x i = 1
)
⇐⇒ (λ divides i)

note that for all x , λ ∈ {i ∈ Z; x i = 1} = nZ so λ is a multiple of n,
the order of x
note that #G ∈ {i ∈ Z; ∀x ∈ G x i = 1} = λZ so λ is a factor of
#G
so, ∀x ∈ G order(x)|λ|#G
λ is the lcm of all order(x), x ∈ G
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Orders in Z∗m

Z∗m is of order φ(m) (example: Z∗35 is of order 24)
Z∗m is of exponent λ(m) (example: Z∗35 is of exponent 12)
for m = pα1

1 × · · · × pαr
r with pairwise different prime numbers

p1, . . . , pr , we have

φ(m) = (p1 − 1)pα1−1
1 × · · · × (pr − 1)pαr−1

r

λ(m) = lcm
(
λ(pα1

1 ), · · · , λ(pαr
r )
)

we have λ(pα) = φ(pα), except for p = 2 and α ≥ 3 for which
λ(pα) = 1

2φ(p
α)

for any x ∈ Z∗m, order(x)|λ(m)|φ(m)
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Checking a Generator of a Group with Known
Order Factorization

Input: an element g in an Abelian cyclic group
of order with known factorization n = pα1

1 ×
· · · × pαr

r
Output: say if g is a generator
Complexity: O(r) exponentials

1: for i = 1 to r do
2: y ← gn/pi

3: if y = 1 then
4: abort: g is not a generator
5: end if
6: end for
7: g is a generator

Proof. The order of g is a factor of n. If it is no factor of any n/pi then
it must be n.
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Discussion

for g arbitrary, we need the factorization of n
if g is randomly selected, we only need the small factors of n
if n is hard to factor, we can still find generators
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Picking a Generator in a Cyclic Group with Known
Order

Input: the order n of an Abelian cyclic group, a
bound B

Output: a generator g of the group
1: find the list p1, . . . , pr of all prime factors of n

which are less than B
2: repeat
3: pick a random g in the group
4: b ← true
5: for i = 1 to r do
6: y ← gn/pi

7: if y = 1 then
8: b ← false
9: end if

10: end for
11: until b

Pr[output g not a generator] ≤ 1
B log B

log n
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Application

generate a generator of Z∗p for a prime p
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Generating a Generator — i

We consider a cyclic group G of order n and we let n =
∏r

i=1 pαi
i with

pairwise different primes pi

g is a generator of G iff g
n
pi ̸= 1 for i = 1, . . . , r

given a random g ∈U G, events g
n
pi = 1 are independent:

g ∈U G is equivalent to its logarithm a ∈U Zn
this is equivalent to (ai)1≤i≤r ∈U Zpα1

1
× · · · × Zpαr

r

g
n
pi = 1 is equivalent to n

pi
a mod (n) = 0

this is equivalent to (0, . . . , 0,qip
αi−1
i ai mod pαi

i , 0, . . . , 0) = 0 for
some invertible qi modulo pαi

i

so, g
n
pi = 1 is equivalent to ai mod pi = 0 (independent, with

probability 1
pi

)
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Generating a Generator — ii

Pr
g∈U G

[
g

n
pi = 1

]
=

1
pi

and these events are independent

we can just simply work with an incomplete factorization: we let
n = q

∏s
i=1 pαi

i which includes all small factors pi ≤ B (i.e. pi > B
for all i > s)
we say that g passes the test if g

n
pi ̸= 1 for i = 1, . . . , s

Pr[not generator|passed] = Pr
[
∃i > s g

n
pi = 1

∣∣∣ ∀i ≤ s g
n
pi ̸= 1

]
≤ 1

B
(r − s)

≤ log q
B log B

≤ log n
B log B

example: n of 1 024 bits and B = 232;
Pr[not generator|passed] ≤ 2−27
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Trial Division Algorithm

Input: an integer n
Output: a list of prime numbers whose product

is n
Complexity: O(

√
n) arithmetic operations

1: b ← ⌊
√

n⌋, x ← n, i ← 2
2: while x > 1 and i ≤ b do
3: while i divides x do
4: print i
5: x ← x/i
6: b ← ⌊

√
x⌋

7: end while
8: i ← i + 1
9: end while

10: if x > 1 then print x
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Fermat Test

Theorem (Little Fermat Theorem)

If n is prime, for any b ∈ {1, . . . , n − 1}, bn−1 mod n = 1.

?
pick b at random

?
bn−1 mod n = 1?

?
n composite

-yes

no

k iterations

?
end

n maybe prime

�
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Fermat Test

Parameter: k , an integer
Input: n, an integer of ℓ bits
Output: notification of non-primality or pseudo-

primality
Complexity: O(kℓ3)

1: repeat
2: pick a random b such that 0 < b < n
3: x ← bn−1 mod n
4: if x ̸= 1 then
5: output “composite” and stop
6: end if
7: until k iterations are made
8: output “maybe prime” and stop
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Significance of the Fermat Test

False Negative: Pr[output : composite|n prime] = 0
False Positive: there exist pathologic numbers n which are not
prime such that Pr[output : maybe prime|n] is high.
Carmichael Numbers n are composite such that for any b,
b ∈ Z∗n ⇐⇒ bn−1 mod n = 1. Hence

Pr[output : maybe prime|n] =
(

φ(n)
n−1

)k
.
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Carmichael Numbers

Definition
We call Carmichael number any integer n which is a product of (at
least 2) pairwise different prime numbers pi such that pi − 1 is a factor
of n − 1.

Theorem
An integer n is a Carmichael number if and only if it is composite and
for any b s.t. gcd(b, n) = 1, we have bn−1 ≡ 1 (mod n).

Example: n = 561 = 3 · 11 · 17 is such that for all b s.t. gcd(b,n) = 1,
we have bn−1 ≡ 1 (mod n).
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Carmichael Numbers: the 561 Case

Example: n = 561 = 3 · 11 · 17 is such that for all b s.t. gcd(b,n) = 1,
we have bn−1 ≡ 1 (mod n).
Proof (of⇒ in the 561 case). We notice that n − 1 = 560 = 24 · 5 · 7
which is a multiple of 3− 1, 11− 1, and 17− 1. Therefore, if b is
prime with 3, we have bn−1 ≡ 1 (mod 3) and the same for 11 and 17.
Hence, from the Chinese Remainder Theorem we obtain that if b is
prime with n we have bn−1 ≡ 1 (mod n).

The test may be wrong with probability(
φ(n)
n − 1

)k

=

(
2× 10× 16

560

)k

=

(
4
7

)k
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Carmichael Numbers: the 949 631 589 089 Case

949 631 589 089 = 6917× 10193× 13469
949 631 589 088 = 25 × 73 × 13× 19× 37× 9467

6917 is prime, 6916 = 22 × 7× 13× 19
10193 is prime, 10192 = 24 × 72 × 13
13469 is prime, 13468 = 22 × 7× 13× 37
the test may be wrong with probability(

φ(n)
n − 1

)k

=

(
9464
9467

)k

≈ (1− 0.000317)k

example: for k = 20 the error probability is approximately
1− 0.00631
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Towards The Miller-Rabin Test

We write n − 1 = 2st with t odd
If n is prime, we have

bn−1 mod n =
(
· · ·
(
(bt)2

)2 · · ·
)2

mod n = 1

If n is prime, +1 and −1 are the only possible square roots of 1
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The Miller-Rabin Test

bt mod n -̸= 1
SQ -̸= 1

SQ -̸= 1 · · · -̸= 1
SQ -̸= 1

SQ - 1

?6
is it ≡ −1?

at most s︷ ︸︸ ︷

Miller-Rabin test: check that the sequence (bt , b2t , . . . , b2s t) is of form
either (1,1, . . . , 1) or (⋆, . . . , ⋆,−1, 1, . . . , 1)
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The Miller-Rabin Primality Test

Parameter: k , an integer
Input: n, an integer of ℓ bits
Output: notification of non-

primality or pseudo-primality
Complexity: O(kℓ3)

1: if n = 2 then
2: output “prime” and stop
3: end if
4: if n is even then
5: output “composite” and stop
6: end if
7: write n = 2st + 1 with t odd

8: repeat
9: pick b ∈ {1, . . . ,n − 1}

10: x ← bt mod n, i ← 0
11: if x ̸= 1 then
12: while x ̸= n − 1 do
13: x ← x2 mod n, i ← i + 1
14: if i = s or x = 1 then
15: output “composite”

and stop
16: end if
17: end while
18: end if
19: until k iterations are made
20: output “maybe prime” and stop
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Miller-Rabin Criterion

Theorem
An integer n is prime if and only it passes the Miller-Rabin test for all
b ∈ Z∗n.

Proof (Sketch).
⇒ trivial
⇐ observe that passing Miller-Rabin implies passing Fermat
→ just prove that Carmichael numbers do not pass
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Bounding Errors

Theorem (Miller-Rabin)

If more than a quarter of b ∈ Z∗n pass the Miller-Rabin test, then all
b ∈ Z∗n do so.

Consequence: false positives are negligible:

Pr[output maybe prime|n composite] ≤ 4−k
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Prime Number Generation
Theorem (Prime Number Theorem)

Let p(N) denote the number of prime numbers in {2, 3, . . . ,N}. We
have p(N) ∼ N

ln N when N increases toward the infinity.

→ the probability that a random ℓ-bit number is prime is ≈ 1
ℓ ln 2

Example: a 512-bit random integer is prime with probability ≈ 1
355

→ generating a random ℓ-bit prime number takes O(ℓ4)

pick p at random

?
is it prime?

?
p found

no

yes

�
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Implementation

Input: ℓ
Output: a random prime number between 2ℓ−1

and 2ℓ

Complexity: O(ℓ4) arithmetic operations
1: repeat
2: pick a random number n of ℓ bits
3: until a primality test with k iterations accepts

n as a prime number
4: output n

With k = 1
2 (log2 ℓ− log2 ε) the probability that this algorithm outputs a

composite number is less than ε.
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Plain RSA Cryptosystem

Public parameter: an integer ℓ.
Set up: find two random different prime numbers p and q of

size ℓ
2 bits. Set N = pq. Pick a random e until

gcd(e, (p − 1)(q − 1)) = 1. (Sometimes we pick special
constant e like e = 17 or e = 216 + 1.) Set
d = e−1 mod ((p − 1)(q − 1)).

Message: an element x ∈ ZN .
Public key: Kp = (e,N).
Secret key: Ks = (d ,N).
Encryption: y = xe mod N.
Decryption: x = yd mod N.
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Plain RSA

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?

SV 2016–17 RSA Cryptography CryptoSec 277 / 1037



RSA Completeness

Theorem (Euler)

Let p, q be two different primes and N = p × q.
For any x ∈ {0, . . . ,N − 1} and any k, we have xkφ(N)+1 mod N = x.

Consequence: RSA decryption works!
Proof. from CRT...
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RSA Complexity

RSA with a modulus of ℓ bits and a random e.
Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ3)

Decryption: O(ℓ3)

RSA with a modulus of ℓ bits and a constant e (e.g. e = 216 + 1).
Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ2)

Decryption: O(ℓ3)
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ElGamal vs RSA

Complexity of Gen is much lower for ElGamal
Problem: ElGamal encryption is length-increasing
Can be easily adapted to other groups (e.g. elliptic curves)
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Square Roots in Finite Fields

Lemma
Let K be a finite field. For any x ∈ K we have

x2 = 1 =⇒

 x = 1
or
x = −1

Proof. Assume that x2 = 1. We know that x2 − 1 = (x − 1)(x + 1).
Case 1: x − 1 = 0 thus x = 1.
Case 2: x − 1 ̸= 0 so we can divide 0 = x2 − 1 by x − 1 and
obtain x + 1 = 0 thus x = −1.

Consequence: x2 = a has at most 2 roots in a finite field
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Existence of Square Roots in Zp

Theorem
Let p be an odd prime number.
b ∈ Z∗p has a square root if and only if b

p−1
2 mod p = 1.

In that case, we say that b is a quadratic residue.

Proof:
⇒ if c2 ≡ b then b

p−1
2 ≡ cp−1 = 1

⇐ since Z∗p is cyclic, let g be a generator and write b ≡ ge

we have b
p−1

2 ≡ 1 so p−1
2 e is multiple of p − 1

thus e is even, let e = 2e′ and we have b ≡ g2e′ ≡
(

ge′
)2

so b

has a square root ge′
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Computing Square Roots in Zp, p = 3 (mod 4)

Lemma
Let p be a prime number such that p ≡ 3 (mod 4). For any x ∈ Zp we
have

y2 ≡ x (mod p) =⇒


y ≡ x

p+1
4 (mod p)

or
y ≡ −x

p+1
4 (mod p)

Proof.
In Zp, we have(

x
p+1

4

)2
= x

p+1
2 = yp+1 = yp−1 × y2 = y2 = x

so x
p+1

4 = ±y .
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Example

square root of 5 in Z11

remark that 11 mod 4 = 3
remark that 5

11−1
2 mod 11 = 5× (52)2 mod 11 = 1 so 5 has a

square root modulo 11

compute 5
11+1

4 mod 11 = 5× 52 mod 11 = 4
remark that 42 mod 11 = 5 so 4 is a square root of 5
other square root is −4 mod 11 = 7
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Tonelli Algorithm

Input: a quadratic residue a ∈ Z∗p where p ≥ 3
is prime

Output: b such that b2 ≡ a (mod p)
Complexity: O((log p)3)

1: repeat
2: choose g ∈ Z∗p at random
3: until g is not a quadratic residue
4: let p − 1 = 2st with t odd
5: e ← 0
6: for i = 2 to s do
7: if (ag−e)

p−1
2i mod p ̸= 1 then

8: e← 2i−1 + e
9: end if

10: end for
11: b ← g−t e

2 a
t+1

2 mod p
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Square Roots in Zn, n = pq

Lemma
Let p, q be two different prime numbers and n = pq. Let x ∈ Zn, and a
and b such that

x ≡ a2 (mod p)
x ≡ b2 (mod q)

We have

x ≡ y2 (mod n)⇐⇒
{

y ≡ ±a (mod p)
y ≡ ±b (mod q)

Consequence: x has 4 square roots in Zn.
Proof. Thanks to the CRT x ≡ y2 (mod n) is equivalent to

x ≡ y2 (mod p)
x ≡ y2 (mod q)

}
⇔
{

a2 ≡ y2 (mod p)
b2 ≡ y2 (mod q)

}
⇔
{

y ≡ ±a (mod p)
y ≡ ±b (mod q)
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Legendre and Jacobi Symbols

Legendre Symbol: for p an odd prime

(
b
p

)
=


0 if b mod p = 0
1 if b is a quadratic residue in Z∗p
−1 if b is not a quadratic residue in Z∗p.

Jacobi Symbol: for n odd(
b
n

)
=

(
b
p1

)α1

× . . .×
(

b
pr

)αr

where n = pα1
1 × . . .× pαr

r is the factorization of n into prime
numbers
(remark: for n = 1 the empty product leads us to (b/n) = +1)
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Application to Quadratic Residuosity

for b ∈ Z∗p:
b is a quadratic residue in Z∗p ⇐⇒ (b/p) = +1
(p is prime)
for b ∈ Z∗n:
b is a quadratic residue in Z∗n =⇒ (b/n) = +1
BUT⇐= IS WRONG!
(n is composite)
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Computing the Legendre Symbol

Let p be an odd prime

(
b
p

)
=


0 if b

p−1
2 mod p = 0

1 if b
p−1

2 mod p = 1
−1 if b

p−1
2 mod p = p − 1

so (b/p) is the modulo p representative of b
p−1

2 in {−1, 0,+1}

Note that x 7→ (x/p) is a group homomorphism from Z∗p to {−1,+1}
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Computing the Jacobi Symbol

( a
b

)
=
( a mod b

b

)
for b odd,( ab

c

)
=
( a

c

) ( b
c

)
for c odd,( 2

a

)
= 1 if a ≡ ±1 (mod 8) and

( 2
a

)
= −1 if a ≡ ±3 (mod 8) for a

odd,( a
b

)
= −

( b
a

)
if a ≡ b ≡ 3 (mod 4) and

( a
b

)
=
( b

a

)
otherwise for a

and b odd.
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Example

(
b
n

)
=

(
362
561

)
(factor 2 isolation) =

(
2× 181

561

)
(multiplicativity) =

(
2

561

)
×

(
181
561

)
(561 ≡ 1 (mod 8)) =

(
181
561

)
(quadratic reciprocity) =

(
561
181

)
(modular reduction) =

(
18

181

)

(factor 2 isolation) =

(
2× 9
181

)
(multiplicativity) =

(
2

181

)
×

(
9

181

)
(181 ≡ 5 (mod 8)) = −

(
9

181

)
(quadratic reciprocity) = −

(
181

9

)
(modular reduction) = −

(
1
9

)
= − 1
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The Group of Quadratic Residues

the Jacobi symbol is homomorphic:(x
n

)(y
n

)
=
(xy

n

)
let QRn be the subgroup of Z∗n of all quadratic residues
we have the following properties:

QRn is included in the subgroup of Z∗n of all x such that( x
n

)
= +1. They match if n is prime.

x ∈ QRn and y ∈ QRn implies xy ∈ QRn

x ∈ QRn and y ∈ Z∗n −QRn implies xy ∈ Z∗n −QRn

for p prime, x ∈ Z∗p −QRp and y ∈ Z∗p −QRp implies xy ∈ QRp

this does not extend to composite n:
3 ∈ Z∗35 −QR35 and 2 ∈ Z∗35 −QR35 but 6 ̸∈ QR35
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Conclusion

algorithm to compute (b/n) in O(ℓ2)

can be used to check quadratic residuosity if n is prime
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Use of Quadratic Residuosity

Goldwasser-Micali cryptosystem

Solovay-Strassen primality testing b
p−1

2 ≡
(

b
p

)
(mod p)

breaking the DDH assumption in Z∗p
note: the ElGamal cryptosystem is IND-CPA secure iff the DDH
assumption on the group is hard
so, it is unsafe to use the ElGamal cryptosystem in Z∗p
mapping {1, . . . , q} to QRp for p = 2q + 1 and use the ElGamal
cryptosystem in QRp (p and q prime)
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Goldwasser-Micali Encryption

Generator

6Secret key pPublic key x, N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

N = pq(
x
p

)
= −1(

x
q

)
= −1

6
?

bit b

y = r2xb mod N

y y

solve (−1)b =
(

y
p

)

b
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Solovay-Strassen Test

Theorem
Let n be an odd number.
n is prime if and only if

Pr
[
b

n−1
2 ≡

(
b
n

)
(mod n)

]
≥ 1

2

for b ∈ Z∗n with uniform distribution.

Note: the square of this equation is bn−1 ≡ 1 (mod n) but we do not
have a so strong result with the Fermat test.

SV 2016–17 RSA Cryptography CryptoSec 297 / 1037



Breaking the Decisional Diffie-Hellmann
Assumption in Z∗p

Let p be an odd prime and g be a generator of Z∗p
We consider the following algorithm:

Algorithm A(g,X ,Y ,K )
1: set a = 1(K/p)=−1
2: set b = 1(X/p)=(Y/p)=−1
3: output 1a=b

Let x , y , k ∈ Zp−1 be uniform and independent
For X = gx , Y = gy , K = gk , we have Pr[A(g,X ,Y ,K ) = 1] = 1

2

For X = gx , Y = gy , K = gxy , we have Pr[A(g,X ,Y ,K ) = 1] = 1
so, A(g,X ,Y ,K ) can distinguish if K is random or the solution to
the Diffie-Hellman problem with (g,X ,Y ).
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Mapping a Number to an ElGamal Group Element

Let p = 2q + 1 with p and q prime, we have (−1/p) = −1 so −1
is not a quadratic residue
the group of quadratic residues QRp is cyclic and of order q, not
containing −1
for all x ∈ Z∗p, either x ∈ QRp or −x ∈ QRp but not both

so, map(x) = x ×
(

x
p

)
mod p maps {1, . . . ,q} onto QRp

we can define the ElGamal cryptosystem on QRp and use map
to represent messages
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3 RSA Cryptography
Euler and Other Chinese
Orders in a Group
Primality Testing
RSA Basics
Quadratic Residuosity
The Factoring Problem
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Factoring Problem

Factoring Problem

Parameters: Gen, a pseudorandom generator
Instance: n, an integer produced by Gen
Problem: factor n

Examples:
Gen generates an RSA modulus
Gen generates Mersenne numbers
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Record using the Number Field Sieve Algorithm

Complexity: e
O
(
(ln n)

1
3 (ln ln n)

2
3

)

RSA768
= 1230186684530117755130494958384962720772853569595334792197322452151726400507

2636575187452021997864693899564749427740638459251925573263034537315482685079
1702612214291346167042921431160222124047927473779408066535141959745985690214
3413

= 3347807169895689878604416984821269081770479498371376856891243138898288379387
8002287614711652531743087737814467999489
×
3674604366679959042824463379962795263227915816434308764267603228381573966651
1279233373417143396810270092798736308917

factored in 2009 by an equivalent of 1500 years of computation on
one core 2.2GHz Opteron.
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Record using the Number Field Sieve Algorithm

21039 − 1
= 5080711
×
(306 digits)

= 5080711
×
5585366661993629126074920465831594496864652701848863764801005234631985328837
4753
×
2075818194644238276457048137035946951629397080073952098812083870379272909032
4679382343143884144834882534053344769112223028158327696525376091410189105241
993899334109711624358962065972167481161749004803659735573409253205425523689

factored in 2007 by an equivalent of 100 years of computation on a
PC 2.2GHz (Opteron).
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Factorization Tomorrow

Factorization of n with complexity O((ln n)2 ln ln n ln ln ln n) by using
Shor’s algorithm

It only works on a quantum computer (if exists)
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Factoring Algorithms on Classical Computers

GNFS: factor n

complexity = e
3
√

64
9 +o(1)(ln n)

1
3 (ln ln n)

2
3

best algorithm for RSA moduli
ECM: finds a factor p

complexity = e
√

2+o(1)(ln p)
1
2 (ln ln p)

1
2

useful for numbers with a small prime factor
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Square Roots in Zpq

Gen: generates integers of form n = pq with p ̸= q both prime

Factoring n

Params.: generator Gen
Instance: n generated by Gen
Problem: factor n

⇕

Square roots in Zn

Params.: generator Gen
Instance: n generated by Gen and a quadratic

residue x ∈ Zn

Problem: find y s.t. y2 mod n = x
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Factoring n =⇒ Computing Square Roots in Zn

Input: factorization n = pq and x
Output: y such that y2 mod n = x
Complexity: O((log n)3)

1: find yp, a square roots of x modulo p by using
efficient algorithms
(e.g. for p mod 4 = 3 compute x

p+1
4 mod p)

2: find yq , a square roots of x modulo q
3: y = CRTp,q(yp, yq)
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Computing Square Roots in Zn =⇒ Factoring n

Input: n, access to a square root
oracle SQRT

Output: p, q prime such that n =
pq

Complexity: O((log n)2 + |SQRT|)
1: repeat
2: pick y0 ∈ {1, . . . , n − 1}
3: x = y2

0 mod n
4: y = SQRT(n, x)
5: until y ̸= y0 and y ̸= −y0 mod

n
6: p = gcd(y − y0, n)
7: q = n/p

since there are 4 square roots,
we have Pr[y = y0 or y =
−y0 mod n] = 1

2

in other cases, y − y0 is zero
modulo one of the two factors
but not modulo the other:
gcd(y − y0, n) is the former
factor
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Computing Element Orders in Z∗n

Gen: generates integers of form n = pq with p ̸= q both prime

Factoring λ(n)

Params.: generator Gen
Instance: Gen→ n
Problem: factor λ(n)

=⇒

Computing orders in Z∗n
Params.: generator Gen
Instance: Gen→ n, x ∈

Z∗n
Problem: order of x

⇓

Factoring n

Params.: generator Gen
Instance: Gen→ n
Problem: factor n

⇐⇒

Computing λ(n)

Params.: generator Gen
Instance: Gen→ n
Problem: compute λ(n)
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Factoring λ(n) =⇒ Computing Element Orders in
Z∗n

Input: factorization
λ(n) = pα1

1 · · · p
αr
r , x ∈ Z∗n

Output: the order u of x
Complexity: O(r) exponentials

1: u ← 1
2: for i = 1 to r do
3: y ← xλ(n)/pαi

i mod n
4: while y ̸= 1 do
5: y ← ypi mod n
6: u ← u × pi
7: end while
8: end for

Fact. If the order of x is pβ1
1 · · · p

βr
r

then, for all i ,
βi ≤ αi

xλ(n)pβi−αi
i mod n = 1

xλ(n)pβi−αi−1
i mod n ̸= 1
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Computing Element Orders in Z∗n =⇒ Knowing λ(n)

Input: an element order oracle in Z∗n
Output: λ(n)

1: λ← 1
2: repeat
3: pick a random x in Z∗n
4: compute the order u of x
5: λ← lcm(λ,u)
6: until λ has not changed for a while

Fact. With the same notations: for all i , Pr[βi < αi ] ≤ 1/pi
Thus, the number of iterations is likely to be very small
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Knowing λ(n) =⇒ Factoring n

Input: λ(n) (n odd)
Output: a non trivial factor of n

1: write λ(n) = 2st with t odd
2: repeat
3: pick a random x in Z∗n
4: x ← x t mod n
5: y ←⊥
6: while x ̸= 1 do
7: y ← x
8: x ← x2 mod n
9: end while

10: until y ̸=⊥ and y ̸≡ −1
(mod n)

11: output gcd(y − 1,n)

Fact. For x ∈ Zn, if x2 mod n = 1,
x ̸= 1, x ̸= n−1 then 1 < gcd(n, x−
1) < n which is a non-trivial factor of
n:

n divides (x − 1)(x + 1)
if gcd(n, x − 1) = n then n
divides x − 1 thus x = 1 which
is wrong
if gcd(n, x − 1) = 1 then n
divides x + 1 thus x = n − 1
which is wrong
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Factorization using λ(n)

x t mod n -̸= 1
SQ -̸= 1

SQ -̸= 1 · · · -̸= 1
SQ -̸= 1

SQ - 1

?6
is it ≡ −1?

at most s︷ ︸︸ ︷
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Knowing λ(n)⇐⇒ Factoring n

=⇒: previous slide
⇐=: λ(pα1

1 · · ·p
αr
r ) is computed by

lcm((p1 − 1)pα1−1
1 , . . . , (pr − 1)pαr−1

r )

NB: knowing a multiple of λ(n)⇐⇒ Factoring n
(same proof)
example: knowing φ(n)⇐⇒ Factoring n

Conclusion: computing φ(n) is hard, computing orders in Z∗n is hard
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Consequence

knowing Kp and Ks in RSA implies factoring N
it is insecure to use common prime numbers between two RSA
keys
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Conclusion

Euler φ function: to compute the order of Z∗n
Chinese Remainder Theorem: parallel Zm and Zn

primality testing: efficient, used to generate prime numbers
RSA cryptosystem: public-key cryptosystem
factoring problem: believed to be hard
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Computational Problems

easy hard

gcd
inverse modulo n
exponential
square root mod n when
factorization of n is known
Legendre/Jacobi symbol
checking primality
finding a generator when
group order is known
computing order when
factorization of group order
is known

factoring
discrete logarithm
(sometimes)
square root mod n
computing φ(n), λ(n)
checking quadratic
residuosity
computing order in group
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Must be Known

Euler ϕ function: formula, properties
Chinese Remainder Theorem: how to use it
orders: tricks to check/pick a generator
primality testing: properties, how to use to generate prime
numbers
RSA: why it works, complexity
quadratic residuosity: how to check, when it is easy to extract
square roots
factoring problem: some reductions to other problems
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Train Yourself
Chinese Remainder Theorem:
midterm exam 2013–14 ex1
final exam 2012–13 ex1
midterm exam 2012–13 ex2
midterm exam 2011–12 ex2
midterm exam 2010–11 ex1
midterm exam 2010–11 ex2
midterm exam 2009–10 ex2
midterm exam 2008–09 ex1
square roots, cubic roots:
midterm exam 2013–14 ex2
midterm exam 2009–10 ex1
quadratic residuosity:
midterm exam 2012–13 ex1
prime number generation:
midterm exam 2014–15 ex1
RSA variant:
final exam 2015–16 ex2
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Roadmap

Galois fields
elliptic curves over Zp

elliptic curves over GF(2k )

using standard curves
Diffie-Hellman over elliptic curves
ElGamal over elliptic curves
pairing-based cryptography
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4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography
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GF(pk) for Dummies

p: a prime number.
Euclidean division in Zp[x ]: for any polynomials A(x) and P(x)
such that P ̸= 0, there exists polynomials R(x) and B(x) such
that A(x) = R(x) + P(x) · B(x) and deg(R) < deg(P). We call
R(x) = A(x) mod P(x) the remainder of A(x) modulo P(x).
Select a monic (i.e. with leading coefficient 1) irreducible (i.e.
who cannot be expressed as a product of polynomials with
smaller degree) polynomial P(x) of degree k in Zp[x ].
Let GF(pk ) be the set of all polynomials in Zp[x ] of degree at
most k − 1.
Addition: regular polynomial addition modulo p.
Multiplication: regular multiplication in Zp[x ] reduced modulo
P(x).
We can prove this constructs a field.
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Example: GF(8)

In order to construct GF(23):
consider the ring Z2[x ] of polynomials
take the monic irreducible polynomial P(x) = x3 + x + 1 of
degree 3
construct

GF(23) = {0, 1, x , x + 1, x2, x2 + 1, x2 + x , x2 + x + 1}

Example: (x + 1) + (x2 + 1) = x2 + x in GF(23).
Example: (x + 1)× (x2 + 1) = x3 + x2 + x + 1 = x2 in GF(23).
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Cerebral GF(pk)

p: a prime number.
Zp[x ] is a Euclidean ring.
Select a monic irreducible polynomial P(x) of degree k in Zp[x ].
P(x) spans a maximal ideal (P(x))
Let GF(pk ) = Zp[x ]/(P(x)) be the quotient of ring Zp[x ] by ideal
(P(x)).
We obtain a field who inherits the addition and multiplication from
the ring structure of Zp[x ].
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Galois Fields

Theorem
We have the following results.

The cardinality of any finite field is a prime power pk .
For any prime power pk , there exists a finite field of cardinality
pk . p is called the characteristic of the field.
Two finite fields of same cardinality are isomorphic, so the finite
field of cardinality pk is essentially unique. We denote it GF(pk )
as Galois field of cardinality pk .
GF(pk ) is isomorphic to a subfield of GF(pk×ℓ).
GF(pk ) can be defined as the quotient of ring of polynomials with
coefficients in Zp by a principal ideal spanned by an irreducible
polynomial of degree k: Zp[x ]/(P(x)).
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Example: GF(5)

GF(5) = Z5 = {0, 1, 2, 3, 4}

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

(GF(5),+) ≈ (Z5,+) (GF(5)∗,×) ≈ (Z4,+)
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Example: GF(4)

GF(4) = {0, 1, x , x + 1} ̸= Z4

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

(GF(4),+) ≈ (Z2 × Z2,+) (GF(4)∗,×) ≈ (Z3,+)

P(x) = x2 + x + 1 irreducible in Z2[x ], GF(4) = Z2[x ]/(P(x))
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Example: GF(28)
Arithmetics in AES

A byte a = a7 . . .a1a0 represents an element of the finite field GF(28)
as a polynomial a0 + a1.x + . . .+ a7.x7 modulo x8 + x4 + x3 + x + 1
and modulo 2

byte polynomial
0x00 0
0x01 1
0x02 x
0x03 x + 1
0x1b x4 + x3 + x + 1

Addition: bitwise XOR
Multiplication by 0x02: shift and XOR with 0x1b if carry

SV 2016–17 Elliptic Curve Cryptography CryptoSec 330 / 1037



Most Important Finite Fields
“prime field”: Zp for a large prime p
“binary field”: GF(2k )

Zp GF(2k )

representation integers from 0 to p − 1 polynomials in x of degree at
most k − 1 with binary coef-
ficients (k -bit strings)
requires the choice of an ir-
reducible polynomial P(x) of
degree k

addition addition modulo p bitwise XOR
multiplication multiplication modulo p ad-hoc algorithms

multiplication by 0x2: shift to
the left and XOR to a con-
stant if carry
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Characteristic 2 Tips

In GF(2k ):
1 + 1 = 0
minus = plus: −a = a
square is linear: (a + b)2 = a2 + b2

power 2i is linear

for k > 1, a2k−1
is the unique square root of a

trace function: Tr(a) = a + a2 + a22
+ · · ·+ a2k−1 ∈ {0, 1}

(traces are roots of z2 = z)
Fact: Tr is linear: Tr(a + b) = Tr(a) + Tr(b)
Fact: for all a in GF(2k ) we have Tr(a2) = Tr(a)
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Exercise

1 show that if z is a root of a = z2 + z then Tr(a) = 0
Tr(a) = Tr(z2 + z) = Tr(z2) + Tr(z) = Tr(z) + Tr(z) = 0

2 show that if Tr(a) = 0 then a = z2 + z has exactly two roots θ and
θ + 1
we have (z + 1)2 + (z + 1) = z2 + 1 + z + 1 = z2 + z so the
mapping z 7→ z2 + z has at most 1

2 2k images
z2 + z = a cannot have more than two roots, to the mapping
z 7→ z2 + z has exactly 1

2 2k images and each image is reached
exactly twice, by some {θ, θ + 1} pair
thanks to the first question, images are in the set of the 1

2 2k field
elements with trace zero
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4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography
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Elliptic Curves

P

Q

P + Q
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Addition in Elliptic Curves
Chord and Tangent Formula

Ea,b = {O} ∪ {(x , y); y2 = x3 + ax + b}

we assume that Ea,b(K) is non-singular:
when a point is non-singular we can define the tangent to this
point
singular point⇐⇒ differential of y2 − (x3 + ax + b) vanishes
⇐⇒ y = 0 and x3 + ax + b = 0 multiple root
curve non-singular⇐⇒ 4a3 + 27b2 ̸= 0
λ = yQ−yP

xQ−xP
is the chord slope

λ =
3x2

P+a
2yP

is the tangent slope
(λ =∞⇐⇒ yP = 0⇐⇒ P + P = O)
the sum of the 3 roots x of the intersection between Ea,b(K) and
the straight line y = λx + µ is λ2 = xP + xQ + xR
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Group Structure

Ea,b = {O} ∪ {(x , y); y2 = x3 + ax + b}

Given P = (xP , yP), we define −P = (xP ,−yP) and −O = O.
Given P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we define
P + Q = O.
Given P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P, we let

λ =

{ yQ−yP
xQ−xP

if xP ̸= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

R = (xR , yR) and P + Q = R.
In addition, P +O = O + P = P and O +O = O.
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Elliptic Curves are Abelian Groups

by restricting to x , y ∈ K where K is a field (example: Q, R, C,
GF(pk ))

1. Ea,b(K) is closed for the addition
2. the addition is associative in Ea,b(K)

HARD (from the chord and tangent formula)
3. O is neutral for the addition
4. for any P ∈ Ea,b(K) we have −P ∈ Ea,b(K) which is the inverse of

P for addition
5. the addition is commutative

Ea,b(K) is an Abelian group
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Remark on Points of Order 2 (Characteristic > 2)

P = (x , y) has order 2 ⇐⇒ P = −P and P ̸= O
⇐⇒ y = 0 and x3 + ax + b = 0

So, the number of points of order 2 is the number of roots of
x3 + ax + b in K

(If we have more than 1 root, the group cannot be cyclic!)
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Recap

(for characteristic > 3)
EC are curves (set of points whose coordinate satisfy an
equation)
the curve must be non-singular (∆ ̸= 0 for some parameter ∆)
EC can (depending on the field) be defined by the equation
y2 = x3 + ax + b (need to add a point O)
EC have an addition rule, making a group structure
→ can multiply a point by an integer
→ some curves can be isomorphic
→ contrarily to Z∗p, EC are not always cyclic
(but we can work on a cyclic subgroup)

SV 2016–17 Elliptic Curve Cryptography CryptoSec 340 / 1037



4 Elliptic Curve Cryptography
Galois Fields
Elliptic Curves
Elliptic Curves over a Prime Field
Elliptic Curves over a Binary Field
Using Elliptic Curves
Elliptic Curve Cryptography
Pairing-Based Cryptography

SV 2016–17 Elliptic Curve Cryptography CryptoSec 341 / 1037



Roadmap

same formulas, but over Zp

notion of twist: elliptic curves come in pairs
notion of j-invariant: an invariant value by isomorphism
cardinality close to p
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Addition over an Elliptic Curve (Characteristic
p > 3)

(Field K of characteristic p > 3)

Ea,b(K) = {O} ∪ {(x , y) ∈ K2; y2 = x3 + ax + b}

Hypothesis: (discriminant) ∆ = −16(4a3 + 27b2) ̸= 0
for P = (xP , yP), we let −P = (xP ,−yP) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P we let

λ =

{ yQ−yP
xQ−xP

if xP ̸= xQ
3x2

P+a
2yP

if xP = xQ

xR = λ2 − xP − xQ

yR = (xP − xR)λ− yP

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.
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Maybe Useful to Know p > 3

Hypothesis: field K of characteristic p > 3 and ∆ ̸= 0
Ea,b and Eu4a,u6b are isomorphic (by (x , y) 7→ (u2x , u3y))
Ea,b and Ev2a,v3b are twist of each other if v is not a square
NB: they become isomorphic in an extension of K where v
becomes a square

j-invariant: j = 1728 4a3

4a3+27b2

#Ea,b is between q + 1− 2
√

q and q + 1 + 2
√

q where q is the
cardinality of K (Hasse Theorem)
NB: for two twists, the average of #Ea,b is q + 1
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Other Example

E1,3 over GF(7) = Z7 is isomorphic to Z6
y2 = x3 + x + 3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-

6

P

2P

3P
4P

5P

O
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Recap

EC can be defined by the equation y2 = x3 + ax + b (plus a point
O)
twist: pair of non-isomorphic curves which become isomorphic
when defined over a larger field
j-invariant: parameter which is always the same for isomorphic
curves and for twists
the order of a curve is close to the cardinality of the field
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Roadmap

similar, but with different formulas
again: notions of twist, j-invariant
a special case: “supersingular curves”
recent results on DL raise big concerns on their security

skip binary curves
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Addition over an Elliptic Curve (Characteristic
p = 2)

(Field K of characteristic p = 2)
case of curve non supersingular (= ordinary curve)

Ea2,a6(K) = {O} ∪ {(x , y) ∈ K2; y2 + xy = x3 + a2x2 + a6}

hypothesis: (discriminant) ∆ = a6 ̸= 0
for P = (xP , yP), we let −P = (xP , xP + yP) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P, we let

λ =

{ yQ+yP
xQ+xP

if xP ̸= xQ
x2

P+yP
xP

if xP = xQ

xR = λ2 + λ+ a2 + xP + xQ

yR = (xP + xR)λ+ yP + xR

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.
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Maybe Useful to Know (Non-supersingular, Binary)

Hypothesis: field K = GF(q) of characteristic 2 and ∆ ̸= 0,
non-supersingular elliptic curve

Ea2,a6(K) is non-singular:
a point is singular⇐⇒ the differential of
(y2 + xy)− (x3 + a2x2 + a6) vanishes⇐⇒ x = y = a6 = 0
existence⇐⇒ a6 = 0
Ea2,a6 and Ea2+u2+u,a6

are isomorphic (by (x , y) 7→ (x , ux + y))
Ea2,a6 and Ea2+v ,a6 are twist of each other if
tr2(v) =

∑
2i<q v2i

= 1 (they become isomorphic in an extension
of K in which tr2(v) vanishes)
j-invariant: j = 1/∆
#Ea2,a6 is between q + 1− 2

√
q and q + 1 + 2

√
q where q is the

cardinality of K (Hasse Theorem)
NB: for two twists, the average of #Ea2,a6 is q + 1
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The Supersingular Case
(Field K of characteristic p = 2)
case of curve supersingular

Ea3,a4,a6(K) = {O} ∪ {(x , y) ∈ K2; y2 + a3y = x3 + a4x + a6}

hypothesis: (discriminant) ∆ = a4
3 ̸= 0

for P = (xP , yP), we let −P = (xP , yP + a3) and −O = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q = −P, we let P + Q = O.
for P = (xP , yP) and Q = (xQ , yQ), if Q ̸= −P, we let

λ =

{ yQ+yP
xQ+xP

if xP ̸= xQ
x2

P+a4
a3

if xP = xQ

xR = λ2 + xP + xQ

yR = (xP + xR)λ+ yP + a3

R = (xR , yR) and P + Q = R.
addition to O: P +O = O + P = P and O +O = O.
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Maybe Useful to Know (Supersingular, Binary)

Hypothesis: field K = GF(q) of characteristic 2 and ∆ ̸= 0,
supersingular curve

Ea3,a4,a6(K) is non-singular iff a3 ̸= 0:
a point is singular⇐⇒ the differential of
(y2 + a3y)− (x3 + a4x + a6) vanishes⇐⇒ x2 = a4, y2 = a6,
a3 = 0
existence⇐⇒ a3 = 0
the j-invariant vanishes (j = 0)
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Hardness of the Discrete Logarithm

DL is easy in anomalous curves over Zp

binary curves may be exposed to recent attacks
there are other families of weak curves
in a group of order n, Pollard Rho algorithm solves DL in O(

√
n)

we can consider tradeoffs:
run precomputation of O(n 2

3 ) then compute any DL in O(n 2
3 )

(people tend to use the very same curves...)

Note: curves which are bad for DL may be good for other things...
(e.g. pairing-based cryptography)
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Using Point Compression (Prime Field Case)

Elliptic curve equation:

y2 = x3 + ax + b

A single x leads to two y which are opposite from each other.

→ we can get y from
x
the parity of y (y and p − y have different parity)

Format “hh hexstring”
hh = 00 point O (following: nothing)
hh = 02 point compression with y even (following: x)
hh = 03 point compression with y odd (following: x)
hh = 04 no compression (following: x and y)
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Using Point Compression (Binary Field Case)

Elliptic curve equation:(y
x

)2
+

y
x
= x + a2 +

a6

x2

A single x leads to two y such that y
x = θ or θ + 1 for some θ

→ we can get y from
x
the constant term of y/x as a polynomial (the two roots
y/x have sum 1 thus only differ in their constant term)

Format “hh hexstring”
hh = 00 point O (following: nothing)
hh = 02 point compression with y/x even (following: x)
hh = 03 point compression with y/x odd (following: x)
hh = 04 no compression (following: x and y)
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Manipulating Elliptic Curves in Practice

A representation problem:
bit strings
byte strings
integers
polynomials
field elements
elliptic curve points

see http://www.secg.org/sec1-v2.pdf for an example of
representation standard
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Domain Parameters

a field
either a prime number p
or a power q of 2 together with an irreducible polynomial over
GF(2) of degree log2 q

field elements defining an elliptic curve E
a point G in E
the order n of G in E (may be smaller than the order of E)
(for pseudorandom curves) a seed s (to generate a j-invariant)
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Standard Curves

pseudorandom curves over Zp

y2 = x3 + ax + b
provide seed to generate j

→ Discrete Log is assumed to be hard
ordinary curves over a binary field

y2 + xy = x3 + a2x2 + a6

for pseudorandom curves: provide seed to generate j
for special curves (Koblitz curves): a6 = 1, a2 ∈ {0, 1}
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NIST Standard Curves (2013)

NIST Recommended Elliptic Curves for Federal Government Use
Appendix D of FIPS186–4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

pseudorandom over Zp: P192, P224, P256, P384, P521
ordinary curves over binary fields:

pseudorandom: B163, B233, B283, B409, B571
special: K163, K233, K283, K409, K571
(called Koblitz curves or anomalous binary curves (ABC))
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SECG Standard Curves (2000)

SEC2: Recommended Elliptic Curve Domain Parameters
http://www.secg.org/sec2-v2.pdf

pseudorandom over Zp: secp112r1, secp112r2, secp128r1,
secp128r2, secp160r1, secp160r2, secp192r1, secp224r1,
secp256r1, secp384r1, secp521r1
special over Zp: secp160k1, secp192k1, secp224k1, secp256k1
(called generalized Koblitz curves)
pseudorandom over binary fields: sect113r1, sect113r2,
sect131r1, sect131r2, sect163r1, sect163r2, sect193r1,
sect193r2, sect233r1, sect283r1, sect409r1, sect571r1
special over binary fields: sect163k1, sect233k1, sect239k1,
sect283k1, sect409k1, sect571k1
(called Koblitz curves or anomalous binary curves (ABC))
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Other Standards

ANSI X9.62
IEEE P1363
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Example: secp192r1 = P192

secp192r1 = {O} ∪ {(x , y) ∈ Zp; y2 = x3 + ax + b}

p = 6277101735386680763835789423207666416083908700390324961279

a = p − 3

= 6277101735386680763835789423207666416083908700390324961276

b = 2455155546008943817740293915197451784769108058161191238065

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 03 : 602046282375688656758213480587526111916698976636884684818

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

note that p = 2192 − 264 − 1, 2192 − 295 < n < 2192, and n is prime

SV 2016–17 Elliptic Curve Cryptography CryptoSec 363 / 1037



Example: sect163r2 = B163

sect163r2 = {O} ∪ {(x , y) ∈ GF(q); y2 + xy = x3 + a2x2 + a6}

q = 2163

f (x) = x163 + x7 + x6 + x3 + 1

a2 = 1

a6 = 02 0a601907 b8c953ca 1481eb10 512f7874 4a3205fd

n = 04 00000000 00000000 000292fe 77e70c12 a4234c33

= 5846006549323611672814742442876390689256843201587

G = 03 03 f0eba162 86a2d57e a0991168 d4994637 e8343e36

seed = 85e25bfe 5c86226c db12016f 7553f9d0 e693a268

note that 2162 < n < 2162 + 282 and n is prime
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Elliptic Curves are Real

secp256r1 = P256

used for digital signature in Swiss biometric passports
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Example: Curve25519

Curve25519 = {O} ∪ {(x , y) ∈ Zp; y2 = x3 + 486 662x2 + x}

p = 2255 − 19

xG = 9

order(G) = 2252 + 27742317777372353535851937790883648493

Some X25519 function comes with it for ECDH
equation different than previous ones!
optimized implementations
made by no company or government agency
used in SSH, Tor, Signal, Bitcoin, ...
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ECDH: Elliptic Curve Diffie-Hellman

specified in SEC1 (http://www.secg.org/sec1-v2.pdf) and
IEEE1363
used in Bluetooth 2.1
used in EAC for epassports
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ECDH

Participants: U and V
U and V agree on domain parameters T = (p, a, b,G, n, h) or
T = (m, f (x), a, b,G, n, h)
(h is the cofactor 1

n#E(GF(q)) with q = p or (q = 2m))
U resp. V selects his secret key dU resp. dV ∈ Z∗n and compute
his public key QU = dU .G resp. QV = dV .G
U and V exchange their public keys
both check Q ∈ E(GF(p)), Q ̸= O, n.Q = O
both compute P = dU .QV = dV .QU

set z = xP

convert the field element z into a byte string Z
use a KDF as agreed to derive a key K
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ECIES (EC Integrated Encryption Scheme)

Generator

K = kG

6Secret key kPublic key K 6 AUTHENTICATION
INTEGRITY

-Message
m Encrypt -Ciphertext

R∥c∥d

r ∈ Z∗
n

R = rG
(kE∥kM ) = KDF(rK∥extra1)

c = EnckE (m)
d = MACkM (c∥extra2)

-
R∥c∥d

Decrypt

S = kR
(kE∥kM ) = KDF(S∥extra1)

m = DeckE (c)

d ?
= MACkM (c∥extra2)

-Message
m

�
�

Adversary

select field, elliptic curve
G point of order n

n prime
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Principles of ECIES

use Diffie-Hellman to exchange a symmetric kE∥kM

use kE to encrypt
use kM for integrity protection

this is a hybrid encryption:
we use public-key cryptosystem to exchange a symmetric key and
symmetric cryptography to transport the message securely
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Exercise

identify the algebraic structure (group/ring/field), the corresponding
law(s) and neutral element(s)

Z26...

...is a ring for addition and multiplication modulo 26 and neutral
element 0 and 1

the set of permutations over the alphabet...

...is a group for composition and the identity permutation as a
neutral element

secp192r1...

...is a group for EC point addition law and the point at infinity as a
neutral element

GF(2128)...

...is a field for addition and multiplication of polynomials and the
constant polynomials 0 and 1 as neutral elements
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Pairing of Elliptic Curves
for some pairs of elliptic curves G1 and G2 we can construct a
function

e : G1 ×G2 → GT

to a group GT (with multiplicative notations) such that
e is bilinear: e(aP, bQ) = e(P,Q)ab for a, b ∈ Z, P ∈ G1, Q ∈ G2

e is non-degenerate: e(P,Q) ̸= 1 for some P ∈ G1 and Q ∈ G2

(we use supersingular curves)

consequences:
this may be bad for EC-security in G1 = G2 as we can distinguish
(P, xP, yP, xyP) from (P, xP, yP, zP) by checking
e(xP, yP) = e(P, xyP)
we call G1 = G2 a gap group because the computational
Diffie-Hellman problem may remain hard even though the
decitional Diffie-Hellman problem is easy
this may create new cryptographic primitives
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3-Party Diffie-Hellman Key Agreement in a Single
Round

let G generate a subgroup of order p of G1 = G2 such that
e(G,G) ̸= 1

Alice picks a ∈ Zp and broacasts A = aG
Bob picks b ∈ Zp and broacasts B = bG
Charly picks c ∈ Zp and broacasts C = cG
all compute K = e(G,G)abc

Alice computes e(B,C)a = K
Bob computes e(C,A)b = K
Charly computes e(A,B)c = K
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Popular Cryptographic Constructions based on
Pairings

Joux 2000: 3-party Diffie-Hellman key agreement in one round
Boneh-Franklin 2001: identity-based encryption
Boneh-Lynn-Shacham 2003: a signature scheme (short)
Sahai-Water 2004: attribute-based encryption
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Conclusion

elliptic curves are groups which can be used in cryptography
advantage: smaller parameters for the same security
better complexity than RSA
many standards are using elliptic curves
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Must be Known

understand how to add points with the help of the formulas (don’t
learn them!)
understand how to manipulate objects (field elements, points,
integers)
understand point compression
understand the standards
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Train Yourself

finite fields: midterm 2008–09 ex3
projective coordinates: midterm 2013–14 ex3
discrete logarithm: final exam 2013–14 ex3
mapping a message to a point: midterm exam 2014–15 ex2
elliptic curve factoring method: midterm exam 2015–16 ex2
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Roadmap

block ciphers: DES, triple-DES, AES
modes of operations: ECB, CBC, OFB, CFB, CTR, XTS
stream ciphers: RC4, A5/1
exhaustive search and tradefoffs
meet-in-the-middle attack
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Symmetric Encryption

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

Encrypt -
Y

-
Y

Decrypt -Message
X

�
�

Adversary
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Symmetric Encryption (Informal)

functionality
DecryptK (EncryptK (X )) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

symmetric
encryption
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Example: Vernam Cipher

components: Alice and Bob, a parameter n
Generator: select K ∈ {0, 1}n uniformly at random
and set it up for Alice and Bob
Encrypt: for X ∈ {0,1}n, compute Y = X ⊕ K ,
send Y and discard K
Decrypt: for Y ∈ {0,1}n, compute X = Y ⊕ K and
discard K

functionality: for any X we have DecryptK (EncryptK (X )) = X
security: perfect secrecy (X and Y have independent

distribution)

Warning: use K only once
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Two Categories of Symmetric Encryption

stream ciphers block ciphers
RC4 DES

GSM–A5/1 3DES
Bluetooth–E0 IDEA

CSS BLOWFISH
... RC5

AES
KASUMI
SAFER

CS-Cipher
FOX

...
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5 Symmetric Encryption
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DES: the Data Encryption Standard

US Standard from NBS (now NIST), branch of the Department of
Commerce in 1977
secret design by IBM based on a call for proposal
based on LUCIFER by Horst Feistel (from IBM)
design influenced by the NSA
rationales of the design published by Don Coppersmith in 1994

dedicated to hardware implementation
block cipher with 64-bit blocks
key of 56 effective bits

SV 2016–17 Symmetric Encryption CryptoSec 393 / 1037



DES

IP−1

?
64 bits Y

Feistel

?

IP

?

?

64 bits
X

�
K16

�

616× 48 bits

K1
�

K2

...
schedule

?

56 bits

K
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DES−1

IP−1

?
X

Feistel

?

IP

?

?
Y

�
K1

�K16
�
K15

...
schedule′

?

K
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Feistel Scheme

transform function over {0, 1} n
2 into permutations over {0, 1}n

inverse permutations have same structure
alternate round functions and halve swaps
final halve swap omitted
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(Direct) Feistel Scheme

Ψ(F K1 ,F K2 ,F K3)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K1

F

K2

F

K3

n
2 bits n

2 bits
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(Inverse) Feistel Scheme

Ψ−1(F K1 ,F K2 ,F K3) = Ψ(F K3 ,F K2 ,F K1)

⊕
??

��

⊕
??

��

⊕
?

?

?
��

?

F

K3

F

K2

F

K1
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(Direct + Inverse) Feistel Scheme

⊕
?? ��

⊕
?? ��

⊕
?? ��

a b

b c

c d

F
K1

F
K2

F
K3

⊕
?? ��

⊕
?? ��

⊕
?

?

? ��
?

d e = c

c = e f = b

a = g f = b

F
K3

F
K2

F
K1

e = c ⊕ F K3(d)⊕ F K3(d) = c
f = d ⊕ F K2(e) =
(b ⊕ F K2(c))⊕ F K2(c) = b
g = e ⊕ F K1(f ) = c ⊕ F K1(b) =
(a⊕ F K1(b))⊕ F K1(b) = a
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DES Round Function Overview

output input

round key

� P � S � ⊕� E �?32 bits 32 bits

48 bits

E : expansion (32 to 48 bits)
⊕: bitwise XOR to a round key
S: eight 6-bit to 4-bit S-boxes (substitution boxes)
P: permutation
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DES Round Function

P S ⊕ E

ou
tp

ut
32

bi
ts input

32
bits

round key 48 bits

S1

S2

S3

S4

S5

S6

S7

S8

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕
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⊕
⊕
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S3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Example: S3(111000) = 0101:

1 1100 0 = 56
1100 = 12
10 = 2

0101 = 5
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DES Key Schedule

schedule(K )

1: K PC1−→ (C,D)
2: for i = 1 to 16 do
3: C ← ROLri(C)
4: D ← ROLri(D)
5: Ki ← PC2(C,D)
6: end for

K : 56-bit register
C,D: two 28-bit registers
K1, . . . ,K16: sixteen 48-bit registers

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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DES Inverse Key Schedule

schedule′(K )

1: K PC1−→ (C,D)
2: for i = 16 down to 1 do
3: Ki ← PC2(C,D)
4: C ← RORri(C)
5: D ← RORri(D)
6: end for

K : 56-bit register
C,D: two 28-bit registers
K1, . . . ,K16: sixteen 48-bit registers

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ri 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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Two-Key Triple DES

X - DES - DES−1 - DES - Y

6K1 6K16K2

K = (K1,K2)
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Three-Key Triple DES

X - DES - DES−1 - DES - Y

6K1 6K36K2

K = (K1,K2,K3)
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From Triple DES to DES

X - DES - DES−1 - DES - Y

6K 6K6K

K

a 3K 3DES chip can emulate DES
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Security Notions

adversary objective: learn confidential information
typically: key recovery
ciphertext only attack: using ciphertexts in transit only
known plaintext attack: same + know (or guess) the
corresponding plaintexts
chosen plaintext attack: force the sender to encrypt some
messages selected by the adversary
chosen ciphertext attack: force the receiver to decrypt some
messages selected by the adversary
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Attacks on DES

weak keys (1977)
optimized exhaustive search (Hellman 1980)
chosen plaintext attack against 2-key TDES using 256 chosen
plaintexts, 256 time and 256 memory (Merkle-Hellman 1981)
known plaintext attack against 2-key TDES using 2t known
plaintexts, 2120−t time (van Oorschot-Wiener 1990)
study on dedicated hardware (Diffie-Hellman 1977, Wiener 1993)
chosen plaintext attack with 247 chosen plaintexts (Biham-Shamir
1992)
known plaintext attack with 243 known plaintexts (Matsui 1994) or
actually a little less 240 (Junod 2001)
optimized exhaustive search within 4 days on a dedicated
hardware (EFF 1998)
bruteforce on 3-key TDES using 232 known plaintexts, 2113 time
and 288 memory (Lucks 1998)
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AES: the Advanced Encryption Standard

US Standard from NIST, branch of the Department of Commerce
in 2001
public process based on a call for proposal
standard version of Rijndael
Rijndael was designed by Joan Daemen and Vincent Rijmen in
Belgium

dedicated to software on 8-bit microprocessors
block cipher with 128-bit blocks
key of length 128, 192, or 256

cartoon: www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

animation: www.formaestudio.com/rijndaelinspector/
archivos/rijndaelanimation.html
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Rijndael Skeleton

128-bit block −→ 4× 4 square matrix of bytes
Nr = 10, 12 or 14 rounds depending on the key size of 128, 192
or 256 bits

AES encryption(s,W )
1: AddRoundKey(s,W0)
2: for r = 1 to Nr− 1 do
3: SubBytes(s)
4: ShiftRows(s)
5: MixColumns(s)
6: AddRoundKey(s,Wr )
7: end for
8: SubBytes(s)
9: ShiftRows(s)

10: AddRoundKey(s,WNr)
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One Non-Terminal Round of Rijndael

SubBytes ShiftRows MixColumns AddRoundKey

- - - - - - - -
6
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SubBytes

SubBytes(s)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si,j ← S-box(si,j)
4: end for
5: end for

- -

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

S(s0,0) S(s0,1) S(s0,2) S(s0,3)

S(s1,0) S(s1,1) S(s1,2) S(s1,3)

S(s2,0) S(s2,1) S(s2,2) S(s2,3)

S(s3,0) S(s3,1) S(s3,2) S(s3,3)
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ShiftRows

ShiftRows(s)
1: replace [s1,0, s1,1, s1,2, s1,3] by [s1,1, s1,2, s1,3, s1,0]
2: replace [s2,0, s2,1, s2,2, s2,3] by [s2,2, s2,3, s2,0, s2,1]
3: replace [s3,0, s3,1, s3,2, s3,3] by [s3,3, s3,0, s3,1, s3,2]

- -

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2
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AddRoundKey

AddRoundKey(s, k)
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: si,j ← si,j ⊕ ki,j
4: end for
5: end for

- -

6

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0
⊕k0,0

s0,1
⊕k0,1

s0,2
⊕k0,2

s0,3
⊕k0,3

s1,0
⊕k1,0

s1,1
⊕k1,1

s1,2
⊕k1,2

s1,3
⊕k1,3

s2,0
⊕k2,0

s2,1
⊕k2,1

s2,2
⊕k2,2

s2,3
⊕k2,3

s3,0
⊕k3,0

s3,1
⊕k3,1

s3,2
⊕k3,2

s3,3
⊕k3,3
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Introduction to GF Arithmetics in Rijndael

look at slide 330

we use the following representation rule
byte bit string polynomial

B b7 · · · b2b1b0 b7.x7 + · · ·+ b2.x2 + b1.x + b0

we replace every 2 by 0 in polynomials
hence 3 = 2 + 1 is replaced by 0 + 1 = 1, 4 is replaced by 0, ...
→ monomial coefficients are binary
we replace every x8 by x4 + x3 + x + 1 in polynomials
hence x9 = x8 × x is replaced by x5 + x4 + x2 + x , ...
→ polynomials have degree at most 7
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Examples

0x5c + 0x2a = 0x76

byte bit string polynomial
0x5c 01011100 x6 + x4 + x3 + x2

+ 0x2a 00101010 x5 + x3 + x
= x6 + x5 + x4 + 2.x3 + x2 + x
= 0x76 01110110 x6 + x5 + x4 + x2 + x

0x9e × 0x02 = 0x27

byte bit string polynomial
0x9e 10011110 x7 + x4 + x3 + x2 + x

× 0x02 00000010 x
= x8 + x5 + x4 + x3 + x2

= x5 + 2.x4 + 2.x3 + x2 + x + 1
= 0x27 00100111 x5 + x2 + x + 1
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GF Arithmetics

A byte a = a7 . . .a1a0 represents an element of the finite field GF(28)
as a polynomial a0 + a1.x + . . .+ a7.x7 modulo x8 + x4 + x3 + x + 1
and modulo 2

byte bit string polynomial
0x00 00000000 0
0x01 00000001 1
0x02 00000010 x
0x03 00000011 x + 1
0x1b 00011011 x4 + x3 + x + 1

Addition: a simple XOR
Multiplication by 0x01: nothing
Multiplication by 0x02: shift and XOR with 0x1b if carry
Multiplication by 0x03: XOR of multiplications by 0x01 and 0x02
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MixColumns

MixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with co-

ordinates s0,is1,is2,is3,i
3: replace s0,is1,is2,is3,i by M × v
4: end for

M =


0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02

 .
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MixColumns

- -s.,0 s.,1 s.,2 s.,3 M × s.,0M × s.,1M × s.,2M × s.,3
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InvMixColumns

InvMixColumns(s)
1: for i = 0 to 3 do
2: let v be the 4-dimensional vector with co-

ordinates s0,is1,is2,is3,i
3: replace s0,is1,is2,is3,i by M−1 × v
4: end for

M−1 =


0x0e 0x0b 0x0d 0x09

0x09 0x0e 0x0b 0x0d

0x0d 0x09 0x0e 0x0b

0x0b 0x0d 0x09 0x0e

 .
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Key Expansion

we consider W as a sequence of 4(Nr + 1) = 44 (resp. 52, 60)
rows (32-bit words) w
we consider the key as a sequence of Nk = 4 (resp. 6, 8) rows
the wi are iteratively loaded:

the first wi are loaded with the key
wi is loaded with wi−Nk ⊕ wi−1

every Nk iterations, the wi is modified before the XOR
for Nk = 8, we add an extra modification
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Key Expansion

KeyExpansion(key,Nk)
1: for i = 0 to Nk− 1 do
2: wi ← keyi
3: end for
4: for i = Nk to 4(Nr + 1)− 1 do
5: t ← wi−1
6: if i mod Nk = 0 then
7: replace [t1, t2, t3, t4] by [t2, t3, t4, t1] in t
8: apply S-box to the four bytes of t
9: XOR x i/Nk−1 (in GF) onto the first byte

of t
10: else if Nk = 8 and i mod Nk = 4 then
11: apply S-box to the four bytes of t
12: end if
13: wi ← wi−Nk ⊕ t
14: end for
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Modes of Operation

transform a block cipher into a symmetric encryption with
variable message length
encrypt and decrypt “on the fly” (online encryption)
in some sense: transform a block cipher into a stream cipher
may require an Initialization Vector (IV)
typically: message length must be multiple of the block length

SV 2016–17 Symmetric Encryption CryptoSec 424 / 1037



ECB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?

C

?

?

C

?

?

C

?

?

C

?

SV 2016–17 Symmetric Encryption CryptoSec 425 / 1037



ECB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6

C−1

6

6

C−1

6

6

C−1

6

6

C−1

6
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Note on the ECB Mode

Information leakage for blocks with low entropy

Chabloz␣␣␣␣␣␣␣␣␣␣␣President␣␣␣␣␣␣␣␣␣␣␣␣78’964.31

Zufferey␣␣␣␣␣␣␣␣␣␣Manager␣␣␣␣␣␣␣␣␣␣␣␣␣␣23’321.16

Neuenschwander␣␣␣␣Consultant␣␣␣␣␣␣␣␣␣␣␣34’445.22

Schneider␣␣␣␣␣␣␣␣␣Affirmative␣␣␣␣␣␣␣␣␣␣38’206.51

Cotti␣␣␣␣␣␣␣␣␣␣␣␣␣Audiovisual␣␣␣␣␣␣␣␣␣␣21’489.15

C(␣␣␣␣␣␣␣3) for Neuenschwander = C(␣␣␣␣␣␣␣3) for Schneider
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ECB vs CBC

original ECB CBC

en.wikipedia.org
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CBC Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?
⊕

?

C

?

-
?
⊕

?

C

?

-
?
⊕

?

C

?

-
?
⊕

?

C

?

-IV
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CBC Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-

6

⊕

6

C−1

6

-IV
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Note on the CBC Mode

Three possibilities for dealing with IV
Using a (non secret) constant IV
example: MRTD (IV= 0)
Using a secret IV which is part of the key
example: TLS
Using a random IV which is sent in clear with the ciphertext
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OFB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?-

?IV
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OFB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn
6
⊕

6
C

?

-
6
⊕

6
C

?

-
6
⊕

6
C

?

-
6
⊕

6

-

?IV
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Note on the OFB Mode

IV must be new for every plaintext!
Use a random one which is sent in clear...
... or use a counter-based IV
This is not only a property of the OFB mode:
property of stream ciphers
OFB actually transforms a block cipher into a stream cipher

IV is used as a nonce (number used once)
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CFB Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

?
⊕

?

C
6

- ?
⊕

?

C
6

- ?
⊕

?

C
6

- ?
⊕

?

-

6IV
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CFB Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

6
⊕
6

C
6

- 6
⊕
6

C
6

- 6
⊕
6

C
6

- 6
⊕
6

-

6IV
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CTR Mode

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

t1 t2 t3 tn

?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
?
⊕
?

C
?

-
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CTR Decryption

x1 x2 x3 . . . xn

y1 y2 y3 . . . yn

t1 t2 t3 tn

6
⊕

6
C
?

-
6
⊕

6
C
?

-
6
⊕

6
C
?

-
6
⊕

6
C
?

-
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Note on the CTR Mode

ti must be new for every block! (a nonce)
Example 1: ti = msg counter∥blk counter
Example 2: ti = t1 + (i − 1) where t1 is the last tn plus 1
Example 3: ti = t1 + (i − 1) where t1 is a (unique) nonce
CTR also transforms a block cipher into a stream cipher
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XTS Mode

used to encrypt a hard disk
hard disks are made of “sectors” of various lengths
lengh may not be a multiple of the block length
requirements:
encryption shall not increase space
encryption shall allow random access with small overhead
uses two keys (K1,K2)

for a block of index j in sector of index i :

yi,j = Enci,j(xi,j) = CK1(xi,j ⊕ ti,j)⊕ ti,j ti,j = αj × CK2(i)

in a GF structure, with a constant α
use ciphertext stealing for the last two blocks
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XTS

i CK2 ×α ×α ×α · · ·

xi,0 xi,1 xi,2 · · ·

⊕ ⊕ ⊕

CK1 CK1 CK1

⊕ ⊕ ⊕

yi,0 yi,1 yi,2 · · ·
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Ciphertext Stealing

used to encrypt two blocks x and x ′ (typically, the last two)
Case 1 (easy): if x and x ′ have regular length, encrypt normally
y = Enc(x), y ′ = Enc′(x ′)
Case 2: if x ′ is shorter than usual.

1: split Enc(x) = y ′∥u with y ′ of same length as x ′

2: y = Enc′(x ′∥u)
3: give y and y ′

to decrypt y and y ′:
1: split Dec′(y) = x ′∥u with x ′ of same length as y ′

2: x = Dec(y ′∥u)
3: give x and x ′
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Ciphertext Stealing
x x ′

Enc

y ′ u

x ′ u

Enc′

y

y y ′
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To Be Known About Modes of Operation

ECB should be avoided
CBC (very popular) requires IV
OFB (stream cipher) requires a nonce
CTR (stream cipher) requires a nonce
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Classical Skeletons for Block Ciphers

Feistel schemes
...and extensions
DES, 3DES, BLOWFISH, KASUMI
Lai-Massey scheme
IDEA, FOX
Substitution-permutation network (SPN)
SAFER, CS-Cipher, AES
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Block Ciphers Characteristics

cipher release block key # rounds comment
DES 1977 64 56 16 secretly developed

3DES 1985 64 112,168 48 pragmatic solution
IDEA 1990 64 128 8.5

SAFER K-64 1993 64 64 6
BLOWFISH 1994 64 0–448 16

RC5 1996 2–256 0–255 0–255 64/128/12 recommended
CS-Cipher 1998 64 0–128 8

AES 2001 128 128,192,256 10,12,14 dependent parameters
KASUMI 2002 64 128 8 dedicated

FOX 2003 64,128 0–256 12–255
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5 Symmetric Encryption
A Cryptographic Primitive
Block Ciphers
Stream Ciphers
Bruteforce Inversion Algorithms
Subttle Bruteforce Inversion Algorithms
Pushing the Physical Limits
Formalism
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Stream Ciphers

adapt the Vernam cipher
use a pseudorandom generator to generate a key stream
the PRNG avoids having to store large secret keys
seed the PRNG with a fixed secret key and a nonce: a number
to be used only once
the nonce avoids reuse of the same keystream
variant 1: participants are synchronized to a nonce (e.g. a
counter or the clock value)
variant 2: the encrypting nonce is sent in clear with the ciphertext
(asynchronous)
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Stream Ciphers from a High Level

plaintext stream

nonce

key

-

-
key schedule init. state- automaton -key strm ⊕ - ciphertext stream

6
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RC4

Designed at MIT in 1987 by Ronald Rivest
Trade secret of RSA Security Inc.
illegally disclosed in 1994
well known to be used in SSL/TLS

dedicated to software on 8-bit microprocessors
stream cipher with bytes streams
key length from 40 bits to 256 (ℓ = 5 to 32 bytes)
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RC4 (Alleged)

?

6

automaton

Key

?
key schedule

?
registers i and j
permutation
S[0],S[1], . . . ,S[255]

?

1: i ← i + 1 mod 256
2: j ← j + S[i] mod 256
3: swap S[i] and S[j]
4: b = S[S[i] + S[j] mod 256]

�

?
output byte b
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RC4 Key Schedule

1: j ← 0
2: for i = 0 to 255 do
3: S[i]← i
4: end for
5: for i = 0 to 255 do
6: j ← j + S[i] + K [i mod ℓ] mod 256
7: swap S[i] and S[j]
8: end for
9: i ← 0

10: j ← 0
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RC4 in Security Protocols

In SSL/TLS:
key is used only once
state is kept from one message to the other

In WEP:
key is the concatenation of a 3-byte nonce (sent in clear) and a
5-byte key
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Known Weaknesses

some correlations between some output bytes and key bytes
when the nonce is known
→ (passive) key recovery attack in WEP after seeing 22500
packets
output bytes are not uniformly distributed
→ ciphertext-only decryption attacks in TLS if a plaintext is
encrypted several times (e.g. secure http cookies)
speculations that some state agencies can break RC4
RC4 is now prohibited (RFC 7465 and similar recommendations)
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GSM A5/1

Designed at ETSI by the SAGE group
Trade secret of the GSM consortium
reverse engineered

dedicated to lightweight hardware
stream cipher with bit streams
64-bit key and 22-bit counter
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A5/1 from a High Level

plaintext frame

Count

KC
-

-
key schedule 64 bits- automaton -114 bits ⊕ - ciphertext frame

6
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Linear Feedback Shift Register (LFSR)

when CLK = 1, increment t , load Ri with Ri+1 and Rd−1 with a
XOR of some Ri ’s

- - - - - - - - - --

⊕
6
� ⊕

6
� ⊕

6
�

R0
xt

R1
xt+1

R2
xt+2

R3
xt+3

R4
xt+4

R5
xt+5

R6
xt+6

R7
xt+7

R8
xt+8

R9
xt+9

xt

xt+10

at time t , Ri = xt+i

xt+d = ad−1xt+d−1 ⊕ · · · ⊕ a0xt for any t (linear recursion)
adxt+d ⊕ · · · ⊕ a1xt+1 ⊕ a0xt = 0 for any t (ad = 1)
connection polynomial: adxd + · · ·+ a1x + a0
example: x10 + x5 + x2 + x + 1
maximal period⇐⇒ primitive polynomial =⇒ irreducible
polynomial
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A5/1 Automaton

(19)
	

CLK1

(22)
	

CLK2

(23)
	

CLK3

?

6
�⊕�

- ?
⊕

?
⊕ - ?

⊕

�

- ?
⊕

�

- ?
⊕

?
⊕ - ?

⊕

�

t1

t2

t3

asynchronous: CLKi = CLK if ti = majority(t1, t2, t3), 0 otherwise
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A5/1 in Key Schedule

	
CLK1

	
CLK2

	
CLK3

- ?
⊕

?
⊕ - ?

⊕

� ⊕�

- ?
⊕

� ⊕�

- ?
⊕

?
⊕ - ?

⊕

� ⊕�

synchronous: CLK1 = CLK2 = CLK3 = CLK
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A5/1 Key Schedule

1: set all registers to zero
2: for i = 0 to 63 do
3: R1[0]← R1[0]⊕ KC[i]
4: R2[0]← R2[0]⊕ KC[i]
5: R3[0]← R3[0]⊕ KC[i]
6: clock registers (synchronous)
7: end for
8: for i = 0 to 21 do
9: R1[0]← R1[0]⊕ Count[i]

10: R2[0]← R2[0]⊕ Count[i]
11: R3[0]← R3[0]⊕ Count[i]
12: clock registers (synchronous)
13: end for
14: for i = 0 to 99 do
15: clock registers (asynchronous)
16: end for
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Known Weaknesses

key recovery known plaintext attack
(kind of time-memory tradeoff)
active attacks on GSM (chosen cipher attack)
ciphertext-only key recovery attack
(optimized bruteforce)
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The Random Key Guessing Game

Parameters: a set K, a setup algorithm
1 (setup) the challenger runs the setup algorithm to select an

element K ∈ K
he may send some clue w to the adversary

2 (guessing) the adversary may send some chosen k ’s to the
challenger who would respond if k ̸= K

3 the adversary wins if K = k
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Example: Opening a Safe (Online Attack)

For any k , we can ask the safe whether the key K is equal to k

attack - key

k
�	

yes/no
safe
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Distribution Cases

Setup selects K following a probability distribution
D is uniform
D is arbitrary
D is fixed and known to the adversary
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Key Recovery Game - Online with no Clue

Adversary Challenger
pick K ∈D K

try k1
query k1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

no←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k1 ̸= K

try k2
query k2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

no←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k2 ̸= K
...

query k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
yes←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k = K

win if answers “yes”
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Exhaustive Search Algorithm (Uniform Case)
(online with no clue and D uniform)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: for all i = 1 to N do
2: if query ki answers yes then
3: yield ki and stop
4: end if
5: end for

E(#iterations) =
N∑

i=1

Pr[K = ki ]i

=
N∑

i=1

1
N

i

=
N + 1

2
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Exhaustive Search Algorithm (Optimal Case)

(online with no clue and D known)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: take the permutation σ of {1, . . . ,N} sorting

kσ(i) by decreasing order of likelihood
2: for all i = 1 to N do
3: if query kσ(i) answers yes then
4: yield kσ(i) and stop
5: end if
6: end for

E(#iterations) = min
σ

(
N∑

i=1

Pr[K = kσ(i)]i

)
which is sometimes called the guesswork entropy of D
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Exhaustive Search Algorithm (Any Case)
(online with no clue)

Input: a set of possible keys K = {k1, . . . , kN}
Challenger interface: input is an element of K,

output is Boolean
1: pick a random permutation σ of {1, . . . ,N}
2: for all i = 1 to N do
3: if query kσ(i) answers yes then
4: yield kσ(i) and stop
5: end if
6: end for

E(#iterations) =
N∑

i=1

E(Pr[K = kσ(i)])i

since σ is random we have E(Pr[K = kσ(i)]) = 1
N for all i :

E(#iterations) =
N∑

i=1

1
N

i =
N + 1

2
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Complexity Analysis (All Cases)

key of distribution D in a set of N elements

number of iterations
worst case complexity N
average complexity D unknown N+1

2
D known smaller
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Metrics of Algorithms

for comparing algorithms, we must look at:
precomputation time
memory complexity
time complexity
number of online queries
probability of success
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Key Recovery Game - Offline with a Clue

Adversary Challenger
pick a random K

witness=F (K )←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

yield k win if k = K
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Using Deterministic Clues

chosen plaintext attack:
get CK (x) for some fixed x chosen by the adversary
password hash (coming up in next slides)
get CK (x0) for some constant x0 (e.g. x0 = 0)

SV 2016–17 Symmetric Encryption CryptoSec 473 / 1037



Using Non-Deterministic Clues

no chosen plaintext attack:
known plaintext attack with random W = (x ,CK (x)) pair
ciphertext only attack with redundant plaintexts
randomized key hash:
instead of leaking CK (x0), leak W = (F (K , salt), salt) with salt
randomly selected by the challenger
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More General Clues
We use a stop test function which tells whether the key candidate is
consistent with the witness

attack - key

k
�	

yes/no

stop test

Examples:

witness stop test
known plaintext attack W = (x ,CK (x)) Ck (W1) = W2

ciphertext only attack W = ciphertext C−1
k (W ) meaningful

salted key hash W = (F (K , salt), salt) F (k ,W2) = W1
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Password Recovery from a Password Hash

assumption: at enrolment, the hash by F of the password is
stored in a database
to check a typed password, just hash it and compare with the
hash in database
remark: in this case, we do not care if the password is wrong; we
just want one with the right hash to pass authentication
→ the adversary has to find one password with correct hash
(the problem is to invert F )
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Inversion (Preimage) Game

(assume a deterministic function F )

Adversary Challenger

w←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
...

yield k win if F (k) = w
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Inversion by Exhaustive Search

Input: an image w
1: shuffle K with a random permutation
2: for all i = 1 to N do
3: if F (ki) = w then
4: yield ki and stop
5: end if
6: end for

If F is a uniformly distributed random function, #X = N, #Y = M:

Pr[success] = 1−
(

1− 1
M

)M

≈ 1− e−
N
M for N ≫ M

Pr[complexity > i] =

(
1− 1

M

)i
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Complexity of an Inversion Attack

E(complexity) =
N−1∑
i=0

i Pr[complexity = i]

=
N−1∑
i=0

Pr[complexity > i]

=
N−1∑
i=0

x i with x = 1− 1
M

=
1− xN

1− x

∼ 1− e−
N
M

1− x
as

N
M
→ +∞

= M
(

1− e−
N
M

)
≈ M for N ≫ M
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Dictionary Inversion Attack (Full Book)

(assume a deterministic function F )

Preprocessing
Input: access to function F

1: for all candidates K do
2: compute F (K )
3: insert (F (K ),K ) in a dictionary
4: end for
5: output the dictionary

Attack
Input: a witness w = F (K ), a dictionary

6: look at w in the dictionary
7: for all (w ,K ) in the dictionary do
8: yield K and stop
9: end for
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Dictionary Inversion Attack (Smaller Dictionary)

(assume a deterministic function F )

Preprocessing
Input: access to function F

1: for D different candidates K do
2: compute F (K )
3: insert (F (K ),K ) in a dictionary
4: end for
5: output the dictionary

Attack
Input: a witness w = F (K ), a dictionary

6: look at w in the dictionary
7: for all (w ,K ) in the dictionary do
8: yield K and stop
9: end for

10: search failed

SV 2016–17 Symmetric Encryption CryptoSec 481 / 1037



Complexity Analysis

Precomputation time D
Memory complexity D
Time complexity ≈ 1
Probability of success (with randomly selected dictionary keys)

D/N
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Summary of Single-Target Brute Force Attacks

strategy preprocessing memory time success proba.
exhaustive search 0 1 N 1
dictionary attack N N 1 1
tradeoffs N N

2
3 N

2
3 cte

partial ex. search 0 1 D D/N
dictionary attack D D 1 D/N
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Application to DES

strategy preprocessing memory time
exhaustive search 0 1 256

dictionary attack 256 256 1
tradeoffs 256 237 237

→ the key of DES is too short!

SV 2016–17 Symmetric Encryption CryptoSec 484 / 1037



Security of Passwords with less than 48 Bits of
Entropy

An 8 i.u.d. random characters password in {a, . . . , z, A, . . . , Z, 0, . . . , 9}
has less than 48 bits of entropy

classical conventional cryptography may require about 300
cycles on a P4 2GHz to check a guess (= 222.6 guesses per
second)
−→ 256d to find a password with a PC
time-memory tradeoffs cracked a (36-bit entropy) password
within a few seconds (complexity N

2
3 + precomputation N)

−→ 1h to find a password (+ a year of precomputation)
special purpose hardwares cracked 56-bit keys within a day
−→ 5 min to find a password
distributed.net cracked 64-bit keys in 2002 after 1757 days
−→ 40 min to find a password
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Extension: Multi-Target Dictionary Inversion
Attack

(assume a deterministic function F )

Preprocessing
Input: access to function F

1: for D different candidates K do
2: compute F (K )
3: insert (F (K ),K ) in a dictionary
4: end for
5: output the dictionary

Attack
Input: T many witnesses wi = F (Ki), a dictio-

nary
6: for i = 1 to T do
7: look at wi in the dictionary
8: for all (wi ,K ) in the dictionary do
9: yield i ,K

10: end for
11: end for
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Complexity Analysis

Precomputation time D
Memory complexity D
Time complexity T

Probability of success 1−
(
1− D

N

)T ≈ 1− e−
DT
N

This is quite interesting when D ≈ T ≈
√

N...
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The Role of Salt

mitigates dictionary attacks and tradeoffs
(makes dictionaries much larger)
best offline inversion attack with large enough salt:

Input: a set of possible keys K = {k1, . . . , kN}, a
salted witness W = (W1,W2) (salt is W2)

Challenger interface: input is an element of K,
output is Boolean

1: pick a random permutation σ of {1, . . . ,N}
2: for all i = 1 to N do
3: if F (kσ(i),W2) = W1 then
4: yield kσ(i) and stop
5: end if
6: end for
7: search failed
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Double DES

X - DES -Z
DES - Y

6K1 6K2

K = (K1,K2)

this is not much more secure than single DES
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Meet-in-the-Middle Attack

Input: two encryption schemes C′ and C′′ with
two corresponding sets of possible keys K′
and K′′, an (x , y) pair with y = C′′K2

(C′K1
(x))

1: for all k1 ∈ K′ do
2: compute z = C′k1

(x)
3: insert (z, k1) in a hash table (indexed with

the first entry)
4: end for
5: for all k2 ∈ K′′ do
6: compute z = C′′−1

k2
(y)

7: for all (z, k1) in the hash table do
8: yield (k1, k2) as a possible key
9: end for

10: end for
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Complexity Analysis

Memory complexity #K′ (256 for double DES)
Time complexity #K′ +#K′′ (257 for double DES)
Probability of success 1
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Triple DES

X - DES - DES−1 - DES - Y

6K1 6K36K2

K = (K1,K2,K3)

3-key triple DES: K1, K2, K3

2-key triple DES: K1 = K3, K2

DES: K1 = K2 = K3
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Generic Attacks on Triple DES

2 keys

key length: 112
chosen plaintext (×256):
time complexity 257

memory complexity 257

[Merkle-Hellman 1981]
[exercise 2.5 in exercise book]
known plaintext (×232):
time complexity 288

memory complexity 257

[van Oorschot-Wiener 1990]

3 keys

key length: 168
known plaintext (×3):
time complexity 2113

memory complexity 256

[meet-in-the-middle]
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Time-Memory Tradeoffs — i

Input: a deterministic function F
Parameter: ℓ,m, t
Preprocessing

1: for s = 1 to ℓ do
2: pick a reduction function Rs at random and

define fs : k 7→ Rs(F (k))
3: for i = 1 to m do
4: pick k ′ at random
5: k ← k ′

6: for j = 1 to t do
7: compute k ← fs(k)
8: end for
9: insert (k , k ′) in table Ts

10: end for
11: end for
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Precomputed Tables

k1
1,0

f17→ k1
1,1

f17→ k1
1,2

f17→ k1
1,3

f17→ · · ·
f17→ k1

1,t−1
f17→ k1

1,t (k1
1,t , k1

1,0)

k1
2,0

f17→ k1
2,1

f17→ k1
2,2

f17→ k1
2,3

f17→ · · ·
f17→ k1

2,t−1
f17→ k1

2,t (k1
2,t , k1

2,0)

T1 : k1
3,0

f17→ k1
3,1

f17→ k1
3,2

f17→ k1
3,3

f17→ · · ·
f17→ k1

3,t−1
f17→ k1

3,t ⇒ (k1
3,t , k1

3,0)

...
...

...
...

...
...

...
...

k1
m,0

f17→ k1
m,1

f17→ k1
m,2

f17→ k1
m,3

f17→ · · ·
f17→ k1

3,t−1
f17→ k1

m,t (k1
m,t , k1

m,0)

...

kℓ
1,0

fℓ7→ kℓ
1,1

fℓ7→ kℓ
1,2

fℓ7→ kℓ
1,3

fℓ7→ · · ·
fℓ7→ kℓ

1,t−1
fℓ7→ kℓ

1,t (kℓ
1,t , kℓ

1,0)

kℓ
2,0

fℓ7→ kℓ
2,1

fℓ7→ kℓ
2,2

fℓ7→ kℓ
2,3

fℓ7→ · · ·
fℓ7→ kℓ

2,t−1
fℓ7→ kℓ

2,t (kℓ
2,t , kℓ

2,0)

Tℓ : kℓ
3,0

fℓ7→ kℓ
3,1

fℓ7→ kℓ
3,2

fℓ7→ kℓ
3,3

fℓ7→ · · ·
fℓ7→ kℓ

3,t−1
fℓ7→ kℓ

3,t ⇒ (kℓ
3,t , kℓ

3,0)

...
...

...
...

...
...

...
...

kℓ
m,0

fℓ7→ kℓ
m,1

fℓ7→ kℓ
m,2

fℓ7→ kℓ
m,3

fℓ7→ · · ·
fℓ7→ kℓ

3,t−1
fℓ7→ kℓ

m,t (kℓ
m,t , kℓ

m,0)
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Time-Memory Tradeoffs — ii

Attack
Attack input: y = F (K )
1: for s = 1 to ℓ do
2: set i to 0
3: set k to Rs(y)
4: while Ts contains no (k , .) entry

and i < t do
5: increment i
6: k ← fs(k)
7: end while

8: if Ts contains a (k , .) entry then
9: get the (k , k ′) entry from table

Ts

10: while F (k ′) ̸= y and i < t do
11: increment i
12: k ′ ← fs(k ′)
13: end while
14: if F (k ′) = y then
15: yield k ′ as a possible key
16: end if
17: end if
18: end for
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Complexity Analysis

Precomputation time ℓ×m × t
Memory complexity ℓ×m
Time complexity ℓ× t
Probability of success can be shown to be greater than 1

2 for
ℓ ≈ m ≈ t ≈ 3

√
N

time and memory complexity of N
2
3
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Order of Magnitudes

for exhaustive search on a 128-bit key:
# clock cycles needed to perform a typical cryptographic
operation (encryption of one block): 300
clock rate in 2007: 2GHz
age of the universe: 15BY= 15× 109Y≈ 473× 1015s
# machines to do the exhaustive search within 15BY: 108× 1012
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Moore’s Law
Gordon Moore 1965: # transistors / IC doubles every year
Gordon Moore 1975: # transistors / IC doubles every 2 years
popular version: speed of CPU’s doubles every 18 months
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Better Strategy (of Metaphysical Interest)

create the universe then take 15BY of vacations

humankind will create itself, invent computers, and solve the problem
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Energy Bill

we can compute without burning energy! [Bennett 1973]
need supraconductors and invertible computation gates

but all computations must be invertible!
exhaustive search must keep lots of garbage in memory
minimal energy spent to erase one bit: kT ln 2 [Landauer 1961]
k = 1.38× 10−23J/K (Boltzmann constant)
T : absolute temperature (absolute 0 is −273C)
example: assume we run an exhaustive search with 2128 loops
but we erase 128 bits per loop
assume the computer operates at 3µK (very cold!)
energy bill: 1.2× 109J
if we want to do it within 1s we need a 1 200MW nuclear
powerplant
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Conclusion

symmetric encryption: stream ciphers (RC4, A5/1), block
ciphers (DES, AES), modes of operation (ECB, CBC, OFB, CFB,
CTR, XTS)
bruteforce inversion within complexity O (#domain)

tradeoffs within complexity O
(
(#domain)

2
3

)
after

precomputation with complexity O (#domain)
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Ciphers to Remember

cipher release block key design
DES 1977 64 56 Feistel scheme
3DES 1985 64 112,168 triple DES
RC4 1987 8 40–256 stream cipher
AES 2001 128 128,192,256 SPN
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Several Types of Symmetric Encryption

fixed message length vs variable message length
block ciphers: use fixed message length
modes of operation: adapt to variable message length
stream ciphers: encrypt messages “on-the-fly”
deterministic vs probabilistic
most common case for symmetric encryption: deterministic

synchronous (stateful) vs asynchronous (stateless)
authenticating or not (not in this chapter)
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Stream Ciphers vs Block Ciphers

stream cipher block cipher

small granularity (encrypt
bits or bytes)
based on the Vernam
cipher, requires a nonce
(number to be used only
once)
very high speed rate, very
cheap on hardware
low confidence on security

large granularity (encrypt
blocks of 64 or 128 bits),
require padding techniques
for messages with arbitrary
length
high rate, nice for software
implementation, can be
adapted to various
platforms (8-bit, 32-bit, or
64-bit microprocessors)
well established security
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Block Cipher

Definition

A block cipher is a tuple ({0,1}k , {0, 1}n,Enc,Dec) with a key
domain {0,1}k , a block domain {0, 1}n, and two efficient deterministic
algorithms Enc and Dec. It is such that

∀K ∈ {0, 1}k ∀X ∈ {0, 1}n Dec(K ,Enc(K ,X )) = X

Write CK (·) = Enc(K , .) and C−1
K (·) = Dec(K , .).

(operate on bitstrings)
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Variable-Length Symmetric Encryption

Definition
A (variable-length, length-preserving) symmetric encryption
scheme is a tuple ({0, 1}k ,D,Enc,Dec) with a key domain {0, 1}k , a
plaintext domain D ⊆ {0, 1}∗, and two efficient deterministic
algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D
{

Dec(K ,Enc(K ,X )) = X
|Enc(K ,X )| = |X |

Write CK (·) = Enc(K , .) and C−1
K (·) = Dec(K , .).

→ can be made from block ciphers using a mode of operation
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Nonce-Based Symmetric Encryption

Definition
A (nonce-based, variable-length, length-preserving) symmetric
encryption scheme is a tuple ({0, 1}k ,D,N ,Enc,Dec) with a key
domain {0, 1}k , a plaintext domain D ⊆ {0,1}∗, a nonce domain N ,
and two efficient deterministic algorithms Enc and Dec.
It is such that

∀K ∈ {0, 1}k ∀X ∈ D ∀N ∈ N
{

Dec(K ,N,Enc(K ,N,X ))=X
|Enc(K ,N,X )|=|X |

N is supposed to be used only once for encryption
random nonce (beware of random repetitions), counter, sent in clear
or synchronized
→ could be a mode of operation (IV...), a stream cipher
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Security against Key Recovery

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against key recovery under chosen plaintext
attacks if for any nonce-respecting probabilistic algorithm A limited to
a time complexity t and to q queries,

Pr[AEnc(K ,.,.) → K ] ≤ ε

where K ∈ {0, 1}k is random.
It is (q, t , ε)-secure against key recovery under chosen
plaintext/ciphertext attacks if for any similar A,

Pr[AEnc(K ,.,.),Dec(K ,.,.) → K ] ≤ ε

(nonce-respecting: A is not allowed to make two encryption queries
with the same nonce; it is ok to repeat nonces for decryption queries)
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CCA Security is Stronger than CPA Security

If AEnc(K ,.,.) is a CPA adversary, we can define it as AEnc(K ,.,.),Dec(K ,.,.)

but making no use of Dec(K , ., .).
So,

CPA-breaking =⇒ CCA-breaking

So,
CCA-secure =⇒ CPA-secure
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Security against Decryption

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure against decryption under chosen plaintext attacks
if for any nonce-respecting probabilistic algorithm A limited to a time
complexity t and to q queries,

Pr[AEnc(K ,.,.)(N,Enc(K ,N,X ))→ X ] ≤ ε

where K ∈ {0, 1}k , N ∈ N , and X ∈ D are random.
It is (q, t , ε)-secure against decryption under chosen
plaintext/ciphertext attacks if for any similar A,

Pr[AEnc(K ,.,.),Dec(K ,.,.)(N,Enc(K ,N,X ))→ X ] ≤ ε

(A is not allowed to query the decryption oracle with its input
(N,Enc(K ,N,X )))
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Decryption Security is Stronger than Key
Recovery Security

If A is a key recovery adversary, we can define

1: run A → K
2: compute X ′ = Dec(K ,N,Y )
3: return X ′

So,
key recovery-breaking =⇒ decryption-breaking

So,
decryption-secure =⇒ key recovery-secure
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Not Good Enough Security

some parts of the plaintext may be more private than others
how about a cipher letting half of the plaintext in clear and
strongly encrypting the other half?
it would be secure against decryption
the “ideal cipher”: given K , for each N, we pick a random
permutation ΠN and define

Enc(K ,N,X ) = ΠN(X )

security would mean that we cannot tell the real cipher and the
ideal one apart from a black-box usage
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Security against Distinguisher

Definition

A symmetric encryption scheme ({0, 1}k ,D,N ,Enc,Dec) is
(q, t , ε)-secure under chosen plaintext attacks if for any
nonce-respecting probabilistic algorithm A limited to a time
complexity t and to q queries,

Pr[AEnc(K ,.,.) → 1]− Pr[AΠ(.,.) → 1] ≤ ε

where K ∈ {0, 1}k is random and Π(N, .) is a random
length-preserving permutation over D for every N.
It is (q, t , ε)-secure under chosen plaintext/ciphertext attacks if for
any similar A,

Pr[AEnc(K ,.,.),Dec(K ,.,.) → 1]− Pr[AΠ(.,.),Π−1(.,.) → 1] ≤ ε
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Security Notions

key recovery decryption distinguisher
CPA weaker security
CCA stronger security

if we can recover the key, we can decrypt
if we can decrypt, we can recognize from the ideal cipher
if we can break without chosen ciphertext, we can also break with
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Must be Known

types of symmetric encryption
parameters of block ciphers: DES, 3DES, AES
modes of operation: ECB, CBC, OFB, CTR
Feistel scheme
parameters of stream ciphers: RC4
exhaustive search
meet-in-the-middle
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Train Yourself

encryption:
final exam 2013–14 ex1
midterm exam 2012–13 ex3
modes of operation:
midterm exam 2009–10 ex3
midterm exam 2011–12 ex1
Moore’s law:
midterm exam 2008–09 ex1
multitarget password recovery:
final exam 2014–15 ex3
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Roadmap

hash functions: MD5, SHA-1
message authentication codes: HMAC, CBCMAC, WC-MAC
other primitives: commitment, key derivation
birthday paradox
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Message Authentication Code

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
X , c

-
X , c

Check
-

ok?

-Message
X�

�
Adversary
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Message Authentication Code (Informal)

functionality
CheckK (MACK (X )) = (X , ok)

security
cannot forge

Alice and Bob, Generator, MAC, Check
components

MAC

SV 2016–17 Integrity and Authentication CryptoSec 532 / 1037



Hash Function (Informal)

functionality
fixed output length

security
many

Setup, H
components

hash
function
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Commitment to Play Rock-Paper-Scissors

Alice

damn, I
lose

commit(“rock”)−−−−−−−−−−−−−−−→
commit(“paper”)←−−−−−−−−−−−−−−−

open−−−−−−−−−−−−−−−→

Bob

what’s
inside?

SV 2016–17 Integrity and Authentication CryptoSec 535 / 1037



Commitment

-x

-
Random

Commit
-c

-
Key

(delay) -
Key

Open -x
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Using a Commitment Scheme

pick r at random
(c, k)← Commit(x ; r)

commit : c−−−−−−−−−−−−−−−−−−−→ store c
←−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−→

...
←−−−−−−−−−−−−−−−−−−−

open :
k−−−−−−−−−−−−−−−−−−−→ open(c, k) = x
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Commitment Scheme (Informal)

functionality
if Commit(X ; r) = (c, k)

then Open(c, k) = X

security
hiding, binding

Alice and Bob, Setup, Commit, Open
components

commitment
scheme

hiding: Bob does not get a clue on X from c
binding: Alice cannot produce c, k , k ′ such that
Open(c, k) ̸= Open(c, k ′)
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Application Example: Tossing a Coin

how to toss a coin:

Alice Bob

pick x ∈ {0, 1} commit(x)−−−−−−−−−−−−−−→
y←−−−−−−−−−−−−−− pick y ∈ {0, 1}

open−−−−−−−−−−−−−−→ verify
z = x ⊕ y

output: z output: z

z is the outcome of the tossed coin
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Application Example: Playing Dices

how to throw a 6-face die:

Alice Bob

pick x ∈ {1, . . . , 6} commit(x)−−−−−−−−−−−−−−→
y←−−−−−−−−−−−−−− pick y ∈ {1, . . . ,6}

open−−−−−−−−−−−−−−→ verify
z = 1 + ((x + y) mod 6)

output: z output: z

z is the outcome of the thrown die

SV 2016–17 Integrity and Authentication CryptoSec 540 / 1037



Several Types of Commitment Schemes

interactive vs non-interactive
perfectly/statistically/computationally hiding
perfectly/statistically/computationally binding
using a common reference string or not
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Examples

a BAD one: Commit(x ; r) = (Encr (x), (x , r))
(not binding)
a BAD one: Commit(x ; r) = (H(x), x)
(not hiding)
a not-too-bad one: Commit(x ; r) = (H(r∥x), (x , r))
(problem: most likely, H was not designed for that)
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Pseudorandom Number Generator (PRNG)

Gen-
-

-
nb

state

new state
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PRNG (Informal)

functionality
Gen(state) = (nb, new state)

security
unpredictability
indistinguishable from
truly random

Gen
components

PRNG

SV 2016–17 Integrity and Authentication CryptoSec 545 / 1037



PRNG Examples

stream ciphers: RC4, A5/1...
block ciphers with OFB or CTR mode of operation
finite automaton with an internal state (time, key,Seed)
(time is updated by hardware)

J = Enckey(time)
r = Enckey(J ⊕ Seed)

and the seed is replaced by

NextSeed = Enckey(J ⊕ r)

and the output is r
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Famous Failure Cases

early version of SSL (Goldberg-Wagner 1996):
initial seed computed from the time in microseconds and the pid
and ppid numbers (not enough entropy)

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html

Debian OpenSSL implementation until 2008:
initial seed computed from the pid (15 bits) (other randomness
removed due to complains by the compiler purify tool)

http://metasploit.com/users/hdm/tools/debian-openssl/
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Other Famous Failure Case

DSA (Bleichenbacher 2001): the 160-bit random number was
reduced modulo a 160-bit prime number q so that the final
distribution was biased

0

2158

2159

3 · 2158

2160 mod qq
-
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Pseudorandom Function (PRF)

functionality
FK (·)

security
indistinguishable from
truly random function
(as a black-box)

F
components

PRF
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Key Derivation Function (KDF)

functionality
KDF(stuff) = random key

security
one-way

KDF
components

KDF

Generate some random key from some secret (password, output from
key agreement protocols) and non-secret objects (salt, domain
parameters, exchange messages)

SV 2016–17 Integrity and Authentication CryptoSec 550 / 1037



KDF Examples

typically: a standard hash function (MD5, SHA-1, ...)
PKCS#5/RFC 2898
example:

PBKDF1(password, salt, c, ℓ) = truncℓ(Hc(password∥salt))

where Hc is H iterated c times
NB: ℓ shall not be larger than the H length
HKDF (RFC 5869)

HKDF(salt, input, extra, L) = K1∥K2∥ · · · ∥trunc
(

K⌈ L
HMAC length⌉

)
PRK = HMACsalt(input)

K1 = HMACPRK(extra∥0)
Ki+1 = HMACPRK(Ki∥extra∥i)
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Cryptographic Hashing

La cigale ayant
chanté tout l’été
se trouva fort
dépourvue quand
la bise fut venue
pas un seul petit
morçeau de mouche
ou de vermisseau
elle alla trouver
famine chez la
fourmie sa voisine ...

- Hash - 928652983652

can hash a string of arbitrary length
produce digests (hashes) of standard length (e.g. 160 bits)
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A Swiss Army Knife Cryptographic Primitive

Domain expander: hash bitstrings of arbitrary length into bitstrings
of fixed length.
Application: instead of specifying digital signature
algorithms on set of bitstring with arbitrary length, we
specify them with bitstrings of fixed length and use the
hash-and-sign paradigm.

Commitment: “uniquely” characterizes a bitstring without revealing
information on it.
Application: commitment which is binding and hiding.

Pseudorandom generator: generate bitstrings from seeds which
are unpredictable.
Application: generation of cryptographic keys from a
seed.
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Constructing Other Primitives with Hash
Functions

commitment:

Commit(X ; random) = (H(Key),Key = X∥random)

Open(c,X∥random) =

{
X if H(X∥random) = c
⊥ otherwise

PRNG:
generation = H(seed∥counter)

KDF:

seed −→ trunc (H(seed∥1)∥H(seed∥2)∥H(seed∥3)∥ · · · )

domain extender for authentication (MAC or signature):

Authenticate(H(X ))
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Security Properties for Hash Functions

Collision resistance: hash function h for which it is hard to find x
and x ′ such that h(x) = h(x ′) and x ̸= x ′.

→ digital fingerprint of the bitstring

One-wayness: hash function h for which given y it is hard to find
even one x such that y = h(x).

→ witness for a password

Pseudo-randomness : hash function h such that for any given f and
gi = h(f i(x)) for i = 0, . . . ,n − 1 with a random
(unknown) x such that f i(x) is not cycling, it is hard to
predict h(f n(x)).

→ pseudo-random generation
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Threat Models for Hash Functions

Collision attack: find x and x ′ such that x ̸= x ′ and h(x) = h(x ′).
First preimage attack: given y find x such that y = h(x).
Second preimage attack: given x find x ′ such that x ̸= x ′ and

h(x) = h(x ′).
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Bruteforce First Preimage Attack

Input: access to a hash function h, an image y
Output: x such that h(x) = y

1: pick a random ordering of all inputs x1, x2, . . .
2: for all i do
3: compute h(xi)
4: if h(xi) = y then
5: yield x = xi and stop
6: end if
7: end for
8: search failed

SV 2016–17 Integrity and Authentication CryptoSec 558 / 1037



Bruteforce Second Preimage Attack

Input: access to a hash function h onto a do-
main of size N, an input x

Output: x ′ such that x ̸= x ′ and h(x) = h(x ′)
1: compute h(x)
2: pick a random ordering of all inputs x1, x2, . . .
3: for all i such that xi ̸= x do
4: compute h(xi)
5: if h(xi) = h(x) then
6: yield x ′ = xi and stop
7: end if
8: end for
9: search failed
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Scenarii for Threat Models

Substitution in the integrity check process
→ second preimage attack
Substitution in a commitment scheme
→ collision attack
Information retrieval in a commitment scheme
→ first preimage attack
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Cryptographic Hashing

“Message Digest” (MD) devised by Ronald Rivest
“Secure Hash Algorithm” (SHA) standardized by NIST
MD4 in 1990 (128-bit digest)
MD5 in 1991 (128-bit digest) published as RFC 1321 in 1992
SHA in 1993 (160-bit digest) (obsolete, sometimes called SHA0)
SHA-1 in 1995 (160-bit digest)
collision found on MD4 (Dobbertin 1996)
preimage attack on MD4 (Dobbertin 1997)
SHA-2 in 2002: SHA256, SHA384, SHA512 (256-, 384-, and
512-bit digest)
collision found on SHA0 (Joux+ 2004)
collision found on MD5 (Wang+ 2004)
theoretical attack on SHA1 (Wang+ 2005)
SHA-3
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Cryptographic Hashing

message

?

SHA1 -160
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Encryption to Hashing

On-line hashing:
the message is padded following the Merkle-Damgård scheme;
each block is processed using an encryption function C in a
feedback mode according to the Davies–Meyer.

initial
value

message

- C -+

6

512
?

- C -+

6

512
?

. . .

. . .

- C -+

6

pad
?

-160 160
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Merkle-Damgård’s Extension

pad = 1
1

0 . . . 0 length
64

initial
value

message

- -- C′

512
?

C′

512
?

. . .

. . .

- C′

pad
?

-160 160

Note: maximal length is 264 − 1 bits

SHA1 :
264−1∪
ℓ=0

{0, 1}ℓ −→ {0, 1}160
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Merkle-Damgård Theorem

Theorem (Merkle-Damgård 1989)

We construct a cryptographic hash function h from a compression
function C′ by using the Merkle-Damgård scheme. If the compression
function C′ is collision-resistant, then the hash function h is
collision-resistant as well.

Proof.
Case 1: messages of different length
Case 2: messages of same length
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Proof of Merkle-Damgård Theorem - Case 1

IV - -- C′
?

C′
?

. . .

. . .

- C′
?

IV - -- C′
?

C′
?

. . .

. . .

- C′
?

pad ′

pad

X ′
1 X ′

2

X1 X2

X ′
n︷ ︸︸ ︷

Xm︷ ︸︸ ︷
X

X ′
6

?
=

C′(Hm,Xm) = C′(H ′n,X
′
n)
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Proof of Merkle-Damgård Theorem - Case 2

IV - -- C′
?

C′
?

. . .

. . .

- C′

pad
?

IV - -- C′
?

C′
?

. . .

. . .

- C′

pad
?

X ′
1 X ′

2

X1 X2

X ′
n︷ ︸︸ ︷

Xn︷ ︸︸ ︷
X

X ′
6

?
=

C′(Hi ,Xi) = C′(H ′i ,X
′
i )

where i is the last index such that Hi ̸= H ′i or Xi ̸= X ′i
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Davies–Meyer Scheme

chaining value
IV

- encrypt - + - chaining value
digest

6

?

message block

+ is a group law
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Bitwise Boolean Functions in SHA1

f1(b, c, d) = if b then c else d
= (b AND c) OR (NOT(b) AND d)

f2(b, c, d) = b XOR c XOR d
f3(b, c, d) = majority(b, c, d)

= (b AND c) OR (c AND d) OR (d AND b)
f4(b, c, d) = b XOR c XOR d
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Implementation of SHA-1 Compression

Input: an initial hash a,b, c, d ,e, a
message block x0, . . . , x15

Output: a hash a, b, c, d , e
1: for i = 16 to 79 do
2: xi ← ROTL1 (xi−3 XOR xi−8 XOR xi−14

XOR xi−16)

3: end for
4: FOR i = 1 to 4 DO
5: FOR j = 0 to 19 DO
6: t ← ROTL5(a) + fi(b, c, d) +

e + x20(i−1)+j + ki

7: e← d
8: d ← c
9: c ← ROTL30(b)

10: b ← a
11: a← t
12: end for
13: end for
14: a← a + ainitial
15: b ← b + binitial
16: c ← c + cinitial
17: d ← d + dinitial
18: e← e + einitial
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SHA-3 based on Keccak

designed by Bertoni, Daemen, Peeters, and Van Assche
(STMicroelectronics and NXP Semiconductors, Belgium)
based on a sponge construction
uses a permutation Keccak-f [b] (or just f ) with
b = 1 600 = 25× 26 (could use b = 25× 2ℓ with 0 ≤ ℓ ≤ 6)
operates on states bitstrings s represented as 3-dimensional
5× 5× 2ℓ arrays a of bits

ax,y,z = s[2ℓ(5y + x) + z]

in what follows, x , y , z are taken modulo their dimension
f is a sequence of nr = 12 + 2ℓ rounds

R = ι ◦ χ ◦ π ◦ ρ ◦ θ
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One Round of f — i

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

θ is a linear diffusion layer using the parity of columns

θ(a)x,y,z = ax,y,z ⊕
4⊕

j=0

ax−1,j,z ⊕
4⊕

j=0

ax+1,j,z−1

ρ permutes some lanes

ρ(a)x,y,z = ax,y,z− (t+1)(t+2)
2

with
(

x
y

)
=

(
0 1
2 3

)t ( 1
0

)
for t = 0, . . . , 23 (+ use ρ(a)0,0,z = a0,0,z)
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One Round of f — ii

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

π permutes the slices

π(a)X ,Y ,z = ax,y,z with
(

X
Y

)
=

(
1 3
1 0

)(
x
y

)
χ has degree two

χ(a)x,y,z = ax,y,z ⊕ (ax+1,y,z ⊕ 1)ax+2,y,z

ι adds a constant for x = y = 0

ι(a)x,y,z =

{
a0,0,z ⊕ RC[ir ]z if x = y = 0
ax,y,z otherwise

where ir is the round index
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The Sponge

c

r

6
?

6

?
0

0

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-⊕?-
f

-

-

6

f

-

-

6

f

-

-

6

f

6
message∥10∥10∗1 truncated

6

. . .absorb squeeze. . .

algo r c d
SHA3-224 1 152 448 224
SHA3-256 1 088 512 256
SHA3-384 832 768 384
SHA3-512 576 1 024 512
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Hash Functions to Remember

algorithm release digest comment
MD5 1991 128 broken
SHA1 1995 160 still surviving
SHA3 2015 224, 256, 384, 512
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MAC

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
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-
X , c
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ok?

-Message
X�

�
Adversary
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MAC Primitive

functionality
CheckK (MACK (X )) = (X , ok)

security
unforgeability

Alice and Bob, Gen, MAC, Check
components

MAC

typically: MAC appends a code c to X , Check recomputes c and
compares
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Security

adversary objective: forge new messages
typically: key recovery
known message attack (previous picture): using authenticated
messages in transit only
chosen message attack: force the sender to authenticate some
messages selected by the adversary
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Hashing to Authentication: HMAC [RFC 2104]

Computing the MAC of t bytes for a message X with a key K using a
Merkle-Damgård hash function with block size B bytes, digest size L
bytes. (t = L by default.) E.g. H = SHA-1, B = 64, L = 20.

1 If K has more than B bytes, we first replace K by H(K ).
(Having a key of such a long size does not increase the security.)

2 We append zero bytes to the right of K until it has exactly B
bytes.

3 We compute

H((K ⊕ opad)∥H((K ⊕ ipad)∥X ))

where ipad and opad are two fixed bitstrings of B bytes. The ipad
consists of B bytes equal to 0x36 in hexadecimal. The opad
consists of B bytes equal to 0x5c in hexadecimal.

4 We truncate the result to its t leftmost bytes. We obtain
HMACK (X ).

SV 2016–17 Integrity and Authentication CryptoSec 580 / 1037



HMAC [RFC 2104]

MAC
?

trunc
?

H
?

?

H
?

?
⊕ipad
?

?

message

?
⊕opad
?

key∥0 · · ·0
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Examples

algo hash B L t

TLS
MD5 MD5 64 16 16
SHA SHA1 64 20 20

SSH
hmac md5 MD5 64 16 16
hmac md5 96 MD5 64 16 12
hmac sha1 SHA1 64 20 20
hmac sha 96 SHA1 64 20 12
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CBCMAC - (A Bad MAC)

CK CK CK

?

?
⊕
?

-
?
⊕
?

- -

CK

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

MAC

= last ciphertext block of CBC encryption (IV = 0)
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A MAC Forgery

X1 = random MAC(X1) = c
X2 = random MAC(X2) = c′

X3 = X1∥B MAC(X3) = CK (c ⊕ B)

X4 = X2∥B′ MAC(X4) = CK (c′ ⊕ B′)
B′ = B ⊕ c ⊕ c′ MAC(X4) = MAC(X3)

X1

CBCMAC

c

B

⊕

CK

CK (c ⊕ B)

X2

CBCMAC

c′

B′

⊕

CK

CK (c′ ⊕ B′)

=

=

SV 2016–17 Integrity and Authentication CryptoSec 584 / 1037



Other Attack with 1 Known Message

X1 = B1∥ · · · ∥Bn arbitrary
c = MAC(X1)

X2 = X1∥B′∥B2∥ · · · ∥Bn with B′ = c ⊕ B1

forgery: c = MAC(X2)

B1

CK

B2, . . . ,Bn

c

B′

⊕

CK

B2, . . . ,Bn

c′

=

=

c = c′
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Result on CBCMAC

insecure when used alone as a MAC
secure when restricted to messages of same fixed length
might be secure if encrypted (next constructions)
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EMAC (Encrypted MAC) - (A Better CBCMAC
Variant)

CK1 CK1 CK1

?

?
⊕
?

-
?
⊕
?

- -

CK1

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

CK2

?
MAC
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ISO/IEC 9797 - (An Even Better CBCMAC Variant)

CK1 CK1 CK1

?

?
⊕
?

-
?
⊕
?

- -

CK1

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn

CK2

?

trunc

?
MAC
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CMAC [RFC4493] - (Best CBCMAC Variant)

CK CK CK

?

?
⊕
?

-
?
⊕
?

- -

CK

?
⊕
?

?

x1 x2 x3 · · ·

· · ·

· · ·

xn(|pad)

trunc

?
MAC

� kcase

CK : AES with 128-bit key K
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CMAC

(previously called OMAC1)
case 1: xn was not padded
case 2: the message length is not multiple of the block length
pad it with a bit 1 and as many bits 0 as required to reach this
length
L = CK (0) (encryption of the zero block)
k1 is L shifted to the left by one bit XOR the carry constant if any
k2 is k1 shifted to the left by one bit XOR the carry constant if any
actually, this is the GF multiplication by the variable x
carry constant:
0x000000000000001b for 64-bit blocks and
0x00000000000000000000000000000087 for 128-bit blocks

SV 2016–17 Integrity and Authentication CryptoSec 590 / 1037



WC-MAC

Let (hK )K∈UK be a ε-XOR-universal family of hash functions, over the
output domain {0, 1}m, defined by a random key K which is chosen
uniformly at random in K.
Given K and a sequence of keys K1,K2, . . . which are independent
and uniformly distributed over {0,1}m, we define a MAC algorithm
which changes the key for every new message: the MAC of the
message xi of sequence number i is a pair (i , ci) with ci defined by

ci = hK (xi)⊕ Ki

Theorem (Wegman-Carter 1981)

No chosen message attack can forge a new authenticated message
with a probability of success greater than ε.
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Universal Hash Function

Definition (Krawczyk 1994)

Let (hK )K∈UK be a family of hash functions over the output domain
{0,1}m defined by a random key K which is chosen uniformly at
random in a key space K.
This family is ε-XOR-universal if for any a and x ̸= y we have

Pr[hK (x)⊕ hK (y) = a] ≤ ε.

Note: 1 =
∑

a Pr[hK (x)⊕ hK (y) = a] ≤ 2mε so ε ≥ 2−m

SV 2016–17 Integrity and Authentication CryptoSec 592 / 1037



WC-MAC - Proof — i

Proof.
At the end, the attacker collects d triplets (xi , i , ci) for i = 1, . . . , d and
forges (x , j , c) with x ̸= xi for any i .

If j is not in the [1, d ] interval, then Kj is uniformly distributed and
independent from this information, so the probability that c is a valid
MAC of (x , j) is 2−m. (Note that 2−m ≤ ε.)
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WC-MAC - Proof — ii

If j is in the interval [1, d ], let I = {hK (xi)⊕ Ki = ci ; i ∈ [1, d ], i ̸= j}.
The success probability is

P = Pr[hK (x)⊕ Kj = c|hK (xj)⊕ Kj = cj , I]

Due to the distribution of K1, . . . ,Kj−1,Kj+1, . . . ,Kd , we can see that I
is useless in the probability.

P = Pr[hK (x)⊕ Kj = c|hK (xj)⊕ Kj = cj ]

= Pr[hK (x)⊕ hK (xj) = c ⊕ cj |hK (xj)⊕ Kj = cj ]

=
Pr[Kj = hK (xj)⊕ cj |hK (x)⊕ hK (xj) = c ⊕ cj ]

Pr[Kj = hK (xj)⊕ cj ]

×Pr[hK (x)⊕ hK (xj) = c ⊕ cj ] (Bayes)
= Pr[hK (x)⊕ hK (xj) = c ⊕ cj ] ≤ ε

since Kj is independent from K .
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WC-MAC - Proof — iii

Pr[success] = Pr[success|j > d ]Pr[j > d ] + Pr[success|j ≤ d ]Pr[j ≤ d ]
≤ εPr[j > d ] + εPr[j ≤ d ]
= ε
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Example of Universal Hashing (Krawczyk 1994)

(LFSR-based Toeplitz hash function)
Given m and n, we define a family of hash functions hK from
{0, 1}∗ to {0, 1}m

K is the set of all K = (p, s) where p(x) =
∑m

j=0 pjx j is an
irreducible polynomial of degree m over GF(2) and an
s = (s0, . . . , sm−1) is an m-bit string.
K defines an LFSR with connexion polynomial p(x) and initial
state s

st+m =
m−1⊕
j=0

pjst+j hK (x0, . . . , xn−1) =
⊕

0≤t<n
xt=1

(st , . . . , st+m−1)

For any m and n, the family of all hK defined from {0, 1}≤n to
{0, 1}m is n21−m-XOR-universal
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Example

p(x) = 1 + x + x4, s = (1, 0,0, 0)
compute

hK (1, 1,0, 1, 0)

� � �

-⊕
�

1 0 0 0

=

⊕
1

0 0 0 1

⊕
1

0 0 0 0

⊕
0

0 1 0 0

⊕

1 0 0 1

1

0 0 0 0

1 1 0 1

0

hK (1, 1, 0,1, 0) = (1, 1, 0,1)
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WC-MAC using a Stream Cipher

N ← nonce
MACK ,K ′(x) =

(
N,hK (x)⊕ KeystreamK ′,N

)
idea: “encrypt hK (x) using a stream cipher”
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Example (Taken From GCM Mode)

(mac) GMACK (IV,A)
1: set H = CK (0128)
2: set S = GHASHH(A∥0v∥length(A)∥0128)
3: set T = trunc(GCTRK ((IV∥0311),S))
4: return T

(hash) GHASHH(X1, . . . ,Xm) = X1Hm + · · ·+ XmH in GF(2128)

(CTR encryption) GCTRK (ct,X ) =
trunclength(X) (CK (ct)∥CK (ct + 1)∥CK (ct + 2) · · · )⊕ X
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Authenticated Modes of Operation

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary
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CCM (Counter with CBC-MAC)

Roughly speaking:
1: select a nonce N (way to select and synchronize are free)
2: let T = CBCMAC(message) using N
3: encrypt T∥message in CTR mode using N

More precisely, the CCM mode is defined by
a block cipher which accepts 16-Byte blocks
an even parameter M between 4 and 16 (size of the CBCMAC in
bytes)
a parameter L between 2 and 8 (size of the length field in bytes)
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CCM

⊕?

trunc
?

CBC-MAC
??

message pad nonce

?

?

CTR

�
�⊕

� -

key

? ?
head body
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CCM Processing

pad X with enough zero bytes to reach the block boundary
split X∥pad as B1∥ · · · ∥Bn

make B0 = byte1∥N∥length(X ) where byte1 encodes M and L
compute the CBCMAC of B0∥B1∥ · · · ∥Bn, truncate it to M bytes,
and get T
make Ai = byte2∥N∥i where byte2 encodes L
encrypt T∥X by

Y = (T∥X )⊕ (truncM(CK (A0))∥trunc(CK (A1)∥ · · · ∥CK (An)))
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Processing with an Extra Data

If we wish to send X together with a protocol data a which also needs
to be authenticated (e.g. a sequence number, and IP address...)

add a special bit in byte1 which tells that a is used
if a has a length between 1 and 65279 bytes, encode this length
on two bytes, make length(a)∥a∥pad′ where pad′ consists of
enough zero bytes to reach the block boundary
insert it between B0 and B1 before the CBCMAC computation
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GCM Mode

(authenticated encryption) GCMAEK (IV,P,A) with plaintext P
and extra data A

1: set H = CK (0128)
2: set J0 = IV∥0311 (IV concatenated with a 32-bit counter)
3: set C = GCTRK (J0 + 1,P)
4: concatenate A and C with 0 bits to reach a length multiple of

128 and get A∥0v and C∥0u

5: set S = GHASHH(A∥0v∥C∥0u∥length(A)∥length(C))
6: set T = trunc(GCTRK (J0,S))
7: return (C,T )

(MAC) GMACK (IV,A) = GCMAEK (IV, ∅,A)
(hash) GHASHH(X1, . . . ,Xm) = X1Hm + · · ·+ XmH in GF(2128)

(CTR encryption) GCTRK (ct,X ) =
trunclength(X) (CK (ct)∥CK (ct + 1)∥CK (ct + 2) · · · )⊕ X
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GCM

?

⊕
?

message IV

?
CTR �key

�

?
h-

- - ⊕extra

?
body tail
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Authenticated Modes to Remember

mode comment
CCM CTR + CBCMAC
GCM CTR + WC-MAC
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6 Integrity and Authentication
Commitment Scheme
Key Derivation Function and Pseudorandom Generator
Cryptographic Hash Function
Message Authentication Codes
Formalism
Bruteforce Collision Search Algorithms
How to Select Security Parameters?
Other Reasons why Security Collapses
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Hash Function

Definition
A hash function is a tuple (D, {0, 1}τ ,h) with a message domain
D ⊆ {0, 1}∗, an output domain {0, 1}τ , and one efficient deterministic
algorithm h implementing a function

h : D −→ {0, 1}τ
X 7−→ h(X )
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One-Wayness

Definition
A hash function (D, {0, 1}τ , h) is (t , ε)-one-way if for any probabilistic
algorithm A limited to a time complexity t ,

Pr[h(A(y)) = y ] ≤ ε

where y ∈ {0, 1}τ is random.

(= first preimage attack)
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Security Against Collision Attack (Bad Definition)

Definition
A hash function (D, {0, 1}τ , h) is (t , ε)-secure against collision
attacks if for any probabilistic algorithm A limited to a time complexity
t ,

Pr[h(x) = h(x ′), x ̸= x ′] ≤ ε

where (x , x ′) is the output of A

Following this definition, no hash function with #D > 2τ is secure:
collision exist, so A can just print one!

Making a correct definition is beyond the scope of this course
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Message Authentication Code

(most common construction)

Definition

A message authentication code is a tuple ({0, 1}k ,D, {0, 1}τ ,MAC)
with a key domain {0, 1}k , a message domain D ⊆ {0,1}∗, an output
domain {0, 1}τ , and one efficient deterministic algorithm MAC
implementing a function

MAC : {0, 1}k ×D −→ {0, 1}τ
(K ,X ) 7−→ MACK (X )
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Security against Key Recovery

Definition

A message authentication code ({0, 1}k ,D, {0,1}τ ,MAC) is
(q, t , ε)-secure against key recovery under chosen message
attacks if for any probabilistic algorithm A limited to a time complexity
t and to q queries,

Pr[AMAC(K ,.) → K ] ≤ ε

where K ∈ {0, 1}k is random.

(+ similar notion with known message attacks)
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Security against Forgery

Definition

A message authentication code ({0, 1}k ,D, {0,1}τ ,MAC) is
(q, t , ε)-secure against forgery under chosen message attacks if
for any probabilistic algorithm A limited to a time complexity t and to
q queries,

Pr[AMAC(K ,.) forges] ≤ ε

where K ∈ {0, 1}k is random, (X , c) a pair of random variables
defined as the output of AMAC(K ,.), and “AMAC(K ,.) forges” is the event
that MACK (X ) = c and that A did not query X to the authentication
oracle.

(+ similar notion with known message attacks)
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Forgery Security is Stronger than Key Recovery
Security

If A is a key recovery adversary, we can define

1: run A → K
2: pick a fesh X arbitrarily
3: compute c = MAC(K ,X )
4: return (X , c)

So,
key recovery-breaking =⇒ forge

So,
forgery-secure =⇒ key recovery-secure
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Security against Distinguisher

Definition

A message authentication code ({0, 1}k ,D, {0,1}τ ,MAC) is a
(q, t , ε)-pseudorandom function (PRF) if for any probabilistic
algorithm A limited to a time complexity t and to q queries,

Pr[AMAC(K ,.) → 1]− Pr[AF (·) → 1] ≤ ε

where K ∈ {0, 1}k is random and F (·) is a random function from D to
{0,1}τ .
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Security Notions

key recovery forgery PRF
KMA weaker security
CMA stronger security
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Birthday Paradox

Theorem
If we pick independent random numbers in {1, 2, . . . ,N} with uniform
distribution, θ

√
N times, we get at least one number twice with

probability

1− N!

Nθ
√

N(N − θ
√

N)!
−→

N→+∞
1− e−

θ2
2 .

For N = 365, we obtain the following figures.

θ
√

N 10 15 20 25 30 35 40
θ 0.52 0.79 1.05 1.31 1.57 1.83 2.09

probability 12% 25% 41% 57% 71% 81% 89%
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Birthday Paradox - Informal Proof

n = θ
√

N

p ≈ 1−
(

1− 1
N

)( n
2 )

≈ 1−
(

1− 1
N

) n2
2

= 1− e
n2
2 ln(1− 1

N )

≈ 1− e−
n2
2N

= 1− e−
θ2
2
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Birthday Paradox - Proof — i

Proof. We use the Stirling Approximation

n! ∼
n→+∞

√
2πne−nnn

We have

1− p =
N!

Nθ
√

N(N − θ
√

N)!

∼
(

1− θ√
N

)−N+θ
√

N

e−θ
√

N

= exp
[
−θ
√

N + (−N + θ
√

N) log
(

1− θ√
N

)]
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Birthday Paradox - Proof — ii

We now use log(1− ε) = −ε− ε2

2 + o(ε2)

1− p ∼ exp
[
−θ
√

N + (−N + θ
√

N) log
(

1− θ√
N

)]
∼ exp

[
−θ2

2
+ o(1)

]
−→ e−

θ2
2
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Collision Search I

Input: a cryptographic hash function h onto a
domain of size N

Output: a pair (x , x ′) such that x ̸= x ′ and
h(x) = h(x ′)

1: for θ
√

N many different x do
2: compute y = h(x)
3: if there is a (y , x ′) pair in the hash table

then
4: yield (x , x ′) and stop
5: end if
6: insert (y , x) in the hash table
7: end for
8: search failed
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Collision Search II

Input: a cryptographic hash function h onto a
domain of size N

Output: a pair (x , x ′) such that x ̸= x ′ and
h(x) = h(x ′)

1: repeat
2: pick a (new) random x
3: compute y = h(x)
4: insert (y , x) in the hash table
5: until there is already another (y , x ′) pair in

the hash table
6: yield (x , x ′)

we can show that the expected number of iterations is
√

π
2 ×
√

N
(Buffon’s needles...)
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Collision Search Complexity

strategy memory time success proba.

collision search I θ
√

N θ
√

N 1− e−
θ2
2

collision search II
√

π
2 ×
√

N
√

π
2 ×
√

N 1

example for SHA1: N = 2160, complexity ∼ 280
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Example: Birthday Attack on EMAC
First get

√
2MAC length many messages until we get two messages X1

and X2 such that MAC(X1) = MAC(X2) by using the birthday paradox.
Deduce CBCMAC(X1) = C−1

K2
(c) = CBCMAC(X2)

Pick B arbitrarily. Query MAC(X1∥B) = c′

Deduce MAC(X2∥B) = c′

X1

CBCMACK1

CK2

c

B

⊕

CK1

CK2

c′

X2

CBCMACK1

CK2

c

B

⊕

CK1

CK2

c′

=

=

=
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(Almost) Memoryless Collision Search
The Rho (ρ) Effect

x0

6
x1

6
x2

6
x3

6
x4

6
x5

6
x6

�
x7 �

x8 *
x9 -x10

j x11

R x12

U x13

?x14

�
x15	

x16�
x17

�
x18

Yx19

I
x20

K

xi+1 = F (xi)

ρ shape (due to finite set)
tail λ = 5
loop τ = 16
collision F (xλ−1) = F (xλ+τ−1)

Lemma
If F is a random function over a set
of cardinality N, we have
E(λ) = E(τ) =

√
πN/8.
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Floyd Cycle Finding Algorithm (1967)
Tortoise and the Hare

Output: a collision for F
Complexity: O(

√
N) F mappings

1: set x0 at random
2: a← x0 (tortoise)
3: b ← x0 (hare)
4: repeat
5: a← F (a)
6: b ← F (F (b))
7: until a = b
8: a← x0
9: while a ̸= b do

10: aold ← a
11: bold ← b
12: a← F (a)
13: b ← F (b)
14: end while
15: output aold, bold

whenever x2i = xi we must
have τ |i
we find i = τ × ⌈max(λ,1)

τ ⌉
exact complexity is 5i
computations F
which is on average

5×
(

E(λ) +
1
2

E(τ)

)
= 7.5

√
π/8×

√
N
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Why it Works

let xi = F (xi−1)

after iteration i of the repeat-until loop, we have a = xi and
b = x2i
a = b is equivalent to (i ≥ λ and τ |i)
there exists a minimum i = i0 = τ × ⌈λτ ⌉ satisfying this condition
after iteration i of the while-endwhile loop, we have a = xi and
b = xi0+i
a = b is equivalent to i ≥ λ
so, the loop ends with the correct value of λ
the correct value of τ is found with the additional repeat-until
loop
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Cycle Detection Algorithms

Floyd (1967)
Gosper (1972)
Brent (1980)
Sedgewick-Szymanski-Yao (1982)
Quisquater-Delescaille (1989)
van Oorschot-Wiener (1999)
Nivasch (2004)
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Summary of Generic Attacks against Symmetric
Encryption

if we have a n-bit key, (N = 2n)

strategy preprocessing memory time success proba.
exhaustive search 0 1 2n 1
dictionary attack 2n 2n 1 1
tradeoffs 2n 2

2
3 n 2

2
3 n cte

Want a security of 2s?
select n ≥ s
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Summary of Generic Attacks against Hash
Functions

if we hash onto n bits, (N = 2n)

attack complexity
preimage attack 2n

collision attack 2
n
2

Want a security of 2s?
want security against inversion only: select n ≥ s
want security against collisions: select n ≥ 2s
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Breaking Symmetric Cryptography

we do not know how to prove security
we know generic attacks are unavoidable
empirical security: assume (hope) there is no better attack then
known ones
security =⇒ generic attacks are untractable
security parameter for encryption/authentication: key length
Caveat: hash length must be twice the security parameter due to
the birthday paradox
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Cryptanalytic Advances

security is often empirical
→ dedicated attacks
heuristic security against attack methods
→ arguments may be wrong, other attack methods can be
discovered
all eggs in the same basket (lack of crypto-diversity)
→ more exposure, attacks more devastating
the quantum threat
→ quantum computers to factor, compute discrete logarithms, or
even half security parameters [Grover 1996]
side channel attacks
wrong proofs, wrong models
security interference: secure + secure may be insecure
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Conclusion

MAC: HMAC, CBCMAC, WC-MAC, CCM mode, GCM mode
hash functions: MD5, SHA-1
commitment
bruteforce collision within complexity O

(√
#range

)
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Dedicated Primitives and Reductions

Hash functions

Block Ciphers

?

DM + MD schemes

MAC

Stream Ciphers

?

WC MAC

-OFB, CTR modes

-
HMAC

q

CBCMAC
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Must be Known

Merkle-Damgård and Davies-Meyer schemes
parameters of hash functions: MD5, SHA1
MAC: (principles of) HMAC, CBCMAC
existence of authenticated encryption modes: CCM, GCM
collision search based on the birthday paradox
security from key length
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Train Yourself

hash functions:
final exam 2008–09 ex3
midterm exam 2011–12 ex3
collisions:
final exam 2013–14 ex2
final exam 2012–13 ex2
final exam 2010–11 ex1
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Roadmap

mobile telephony: GSM, 3G
WiFi: WEP, WPA
Bluetooth
access control: password, challenge-response, strong
authentication
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7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains
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GSM Architecture

principle 1: authentication of mobile system
principle 2: privacy protection in the wireless link

challenge-response protocol based on Ki
encryption key for a limited period of time (derived from Ki)
identity IMSI replaced by a pseudonym TMSI as soon as possible
Ki never leaves the security module (SIM card) or home security
database (HLR)

SV 2016–17 Case Studies I CryptoSec 652 / 1037



GSM Slang

GSM: Global System for Mobile telecommunications
MS: Mobile Station
SIM: Subscriber Identity Module (part of MS)
HLR: Home Location Register
VLR: Visitor Location Register
IMSI: International Mobile Subscriber Identity (stored in SIM)
Ki: subscriber Integrity Key (securely stored in SIM)
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GSM Protocol

SIM Telephone Radio Network Operator

A5

?

-

Plaintext

A8

A3

-� Ciphertext
A5

?

�

Plaintext

-Response
Compare � A3

A8

Random

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?
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GSM Authentication

A3/8(Ki,RAND) = (SRES,KC)

SIM MS (wireless) VLR (secure) HLR
(Ki) IMSI−−−−−−−−−−→ IMSI−−−−−−−−−−−−−→ (Ki)

RAND←−−−−−−−−−− RAND←−−−−−−−−−− store
n×(RAND,SRES,KC)←−−−−−−−−−−−−−

SRES,KC−−−−−−−−−−→ SRES−−−−−−−−−−→ check
CKC(TMSI)←−−−−−−−−−−

...
TMSI−−−−−−−−−−→

RAND←−−−−−−−−−− RAND←−−−−−−−−−−
SRES,KC−−−−−−−−−−→ SRES−−−−−−−−−−→ check
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Security of Authentication

Ki never leaves the SIM card or the secure database of the
operator (assuming SIM card is tamper proof and HLR is secure)
assuming that A3/8 are secure PRF then authentication to
network is secure
A3/8 not standard: chosen by operator
problem with weak A3/8 (e.g. COMP128)

security: ,
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GSM Encryption

several standard algorithms: A5/0, A5/1, A5/2, A5/3
cipher imposed by network
new KC for each session
synchronized frame counter (see A5/1 on slide 455)
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Security of Privacy protections

blinding the identity: telephone identifies itself in clear at the first
time then using a pseudonym given by the local network
not effective at all:

challenges can be replayed to trace mobile telephones
fake network can force identification in clear (re-synchronization
protocol)

security of A5/0 (no encryption) void
security of A5/2 weak
security of A5/1 not high
security of A5/3 high
fake network can force to weak encryption (they all use the same
key)
replaying a challenge will force reusing a key in one-time pad
message integrity protection is ineffective

security: /
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Improvements in 3G Mobile Telephony

challenges are authenticated (fake network cannot forge them)
integrity protection (MAC)
protection against challenge-replay attacks
uses a block cipher KASUMI instead of the stream cipher A5/1

SV 2016–17 Case Studies I CryptoSec 659 / 1037



The UMTS Crypto Menagery

communication: f8 (encryption) and f9 (MAC) based on KASUMI
signaling communication: f6 (encryption) and f7 (MAC) based on
AES
challenge pseudorandom generator: f0
MILENAGE (key establishment): f1, f1*, f2, f3, f4, f5, f5*
f1 and f5: challenge computation for synchronized entities
f1* and f5*: challenge computation for re-synchronization
f2: response to challenge (replaces A3)
f3: key derivation for encryption (replaces A8)
f4: key derivation for MAC
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MILENAGE Protocol

USIM Telephone Radio Network Operator

f8-f9

?

-

Plaintext

?
OK?

f3-f4

f2

f1-f5

-� Ciphertext
f8-f9

?

�

Plaintext

-Response
Compare �

Nonce

�
f1-f5

f2

f3-f4

Rnd

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?
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MILENAGE Challenges

Challenge
?
⊕

f1

?

f5

�

Nonce

?

?

Key

? ?

Rnd

?

? ?

challenge authenticated based on f1
freshness protection based on a nonce
nonce may be counter-based (USIM and operator synchronized)
privacy protection: the nonce is encrypted by f5

SV 2016–17 Case Studies I CryptoSec 662 / 1037



MILENAGE Challenge Verification

Challenge

6
⊕

f1

?

6
=

f5

�

check

6
?

Key

? ?? ?

1 extract Rnd
2 decrypt Nonce by computing f5(Key,Rnd)
3 check authentication (f1)
4 check Nonce is correct
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Security Misses

network is not authenticated (network only proves he received
authorization from operator)
→ attack by fake network rerouting through expensive networks
of unencrypted network
no encryption awareness
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Mobile Telephony (In)security

2G 3G
confidentiality / ,
message authentication / ,
message integrity / ,
challenge freshness / ,
mobile authentication , ,
network authentication / /
key establishment / ,
frame sequentiality , ,
privacy / ,
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Other Standards

DECT: wireless telephone (connected to fixed base line)
DSAA: DECT standard Authentication Algorithm
DSC: DECT standard Cipher
standard is not public (but published and broken!)
EDGE (used to be GPRS)
GEA: GPRS Encryption Algorithm
standard is not public
cdmaOne (also called IS-95 or CDMA)
no SIM card
CAVE: Cellular Authentication and Voice Encryption
ORYX: encryption algorithm (stream cipher)
CMEA: Cellular Message Encryption Algorithm

SV 2016–17 Case Studies I CryptoSec 666 / 1037



7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains
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IEEE 802.11 in a Nutshell

protocol for wireless local area network (WLAN) at the link level
since 1997
corporate or ad-hoc mode
secure communication by wired equivalent privacy (WEP)
station authentication by Shared Key Authentication (SKA)
since 2003: interim Wi-Fi Protected Access (WPA)
due to security issues
since 2004: added WPA2 (complete change)
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WEP Security Goals

privacy as if communication was through a wired connection
protect against unauthorized access

use up to 4 (common) pre-shared key to be manually set
→ key not frequently changed
→ key not too long (40 or 104 bits)
→ key stored at many places
entirely based on RC4 stream cipher
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WEP Encryption

plaintext frame

IV

key

-

-
KSA init. state- PRGA -key frm ⊕ - ciphertext frame

- append ICV (CRC32)

6

- IV

self-synchronizing stream cipher (24-bit IV sent in clear)
integrity protection using CRC32

→ packets are easily malleable (Borisov-Goldberg-Wagner 2001)

Enckey(IV, plaintext)⊕ [∆∥CRC32(∆)] = Enckey(IV,plaintext⊕∆)
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WEP and SKA Issues

collision on IV’s
a 24-bit IV repeats itself, sooner or later
use linearity of CRC32
if modification injected, make it coherent with CRC32 encoding
dedicated attack on WEP/RC4 encryption
Fluhrer-Mantin-Shamir 2001 and follow up’s
passive ciphertext only attack
(with some bytes of each frame known)
after sniffing 20 000 packets, probability to recover the key is 1

2
Sepehrdad-Vaudenay-Vuagnoux 2012
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WEP (In)security

security is snake oil:

confidentiality /
message authentication /
message integrity /
message freshness no protection
key establishment (pre-shared)
message sequentiality no protection
privacy /
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WPA: a Dirty Quick Fix

WPA-TKIP (Temporal Key Integrity Protocol):
make the RC4 key change for every packet (based on a master
key)
message integrity (with a bad MAC...)
check IV increases to protect against replay attacks
set up master key using EAP (Extensible Authentication
Protocol)

PSK (Pre-Shared Key)
one of the possible authentication protocols form 802.1x using an
authentication server (e.g. RADIUS)
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EAP

EAP-PSK (Pre Shared Key) derive master key from passphrase
EAP-TLS need a certificate for server and station
EAP-TTLS (Tunneled TLS) need a certificate for server then a
login and password for station
EAP-PEAP similar as TTLS with a different protocol
EAP-SIM using a SIM card in GSM network
EAP-AKA same as SIM but for UMTS
EAP-LEAP (Cisco protocol) no longer recommended
EAP-FAST (Cisco protocol to replace LEAP)
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WPA (In)security

confidentiality ,// (academic attacks)
message authentication / (MICHAEL is broken)
message integrity /
message freshness ,
key establishment depends
message sequentiality no protection (packet drops)
privacy /
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WPA2

RC4 replaced by AES CCMP (CCM Protocol = AES in CCM mode)
128 or 256 bit key
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WPA2 (In)security

confidentiality ,
message authentication ,
message integrity ,
message freshness ,
key establishment depends
message sequentiality no protection (packet drops)
privacy /
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7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains
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The Bluetooth Project
short-range wireless technology
designed to transmit voice and data
for a variety of mobile devices (computing, communicating, ...)
bring together various markets

1Mbit/sec up to 10 meters over the 2.4-GHz radio fequency
robustness, low complexity, low power, low cost
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Bluetooth History

10th Century: Viking King Harald Blåtand (Harold Bluetooth)
tried to unify Denmark, Norway, and Sweden
1994: Ericsson initiated a study to investigate the feasibility
May 20, 1998: Bluetooth announced, controled by the Special
Interest Group (SIG) formed by

Ericsson, IBM, Intel, Nokia, and Toshiba
1999: Bluetooth 1.0 Specification Release
2004: Bluetooth 2.0 Specification Release
2007: Bluetooth 2.1 Specification Release (add SSP)
2009: Bluetooth 3.0 Specification Release (add 802.11)
2010: Bluetooth 4.0 Specification Release (add LE)
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Bluetooth Security

mode 1: non-secure
mode 2: service level enforced security
mode 3: link level enforced security
mode 4 (since v4.0): service+link level enforced security
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Bluetooth Security Basics (Link Level)

can switch device to
non connectable (Bluetooth is off)
connectable but not discoverable (invisible without knowing the
MAC address)
discoverable (introduce itself upon any broadcast request)

pairing to set up link keys between devices
typically based on a random PIN
(dummy device) using a built-in PIN

can manage a database of paired devices
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Cycles in Bluetooth

set discoverable mode

?
pairing protocol

?
set non-discoverable mode

?
peer authentication

?
encrypted communication

?
go to sleep

�

6

?

user monitored
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A Strange Integrity Protection

plaintext frame

CLK

BD ADDR

Kc

-

-

-

Encryption -2745 bits⊕ - ciphertext frame

- append a CRC

6

→ packets are easily malleable (Borisov-Goldberg-Wagner 2001)
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Device Pairing

Device 1 Device 2

Operator

PIN

� request, . . . -

PIN

U
�

protocol
-

Klink Klink
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Legacy Pairing Protocol

? ?

PIN

Rnd

? ?
E22 E22

User

Kinit Kinit

?

? ?

?
Rnd

?

-⊕ -⊕

?

⊕
Rnd

?

�⊕�

?? ? ? ?
AddrA AddrB AddrB AddrA

E21 E21 E21 E21

- � - �⊕ ⊕

? ?
Klink KlinkRadio
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Legacy Pairing Protocol

Master A Slave B

user inputs PIN code
pick IN RAND IN RAND−−−−−−−−−→ user inputs PIN code

Kinit = E22(PIN, IN RAND) Kinit = E22(PIN, IN RAND)
pick LK RANDA pick LK RANDB

CA = LK RANDA ⊕ Kinit CB = LK RANDB ⊕ Kinit
CA−−−−−−−−−→
CB←−−−−−−−−−

LK RANDB = CB ⊕ Kinit LK RANDA = CA ⊕ Kinit
compute K compute K

K = E21(LK RANDA,BD ADDRA)⊕ E21(LK RANDB,BD ADDRB)
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Pairing with a Dummy Device

Device Dummy

Operator Factory

PIN

?

PIN�

Kunit

PIN

� request, . . . -�
protocol

-

Kunit
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Legacy Pairing with a Dummy Device

Master A Slave B

user inputs PIN code
pick IN RAND IN RAND−−−−−−−−−→ user inputs PIN code (or not)

Kinit = E22(PIN, IN RAND) Kinit = E22(PIN, IN RAND)
CB←−−−−−−−−− CB = Kunit ⊕ Kinit

K = CB ⊕ Kinit K = Kunit

link key is forced to be the unit key

→ problem if dummy device is (or has been) paired with multiple
devices
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Dummy Devices: Unit Key is Shared with Many
Devices

Device 2

Dummy

Device 1

Kunit

y

Kunit9

scenario: user A paired his headset (Dummy) with his telephone
(Device 1) then user B took the headset for a few seconds to pair it
with his computer (Device 2)...
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Peer Authentication

Master A Slave B

pick AU RANDB
AU RANDB−−−−−−−−−−−−−−−−−−−→

check SRESB
SRESB←−−−−−−−−−−−−−−−−−−− compute SRESB

AU RANDA←−−−−−−−−−−−−−−−−−−− pick AU RANDA

compute SRESA
SRESA−−−−−−−−−−−−−−−−−−−→ check SRESA

SRESd = E1(K ,AU RANDd ,BD ADDRd )
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Missing Security Protection

Cryptographic pseudorandom generator
→ some device may have poor generators
Liveliness + session sequentiality
→ some packets may be removed (Kügler 2003)
Strong anonymity
→ traceability (Jakobsson-Wetzel 2001)
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Insecurity Summary

dummy devices use the same key with many devices
suspicious security of cryptographic primitives
academic attacks on E0 encryption
integrity protection is void
messages can be maliciously erased in the radio channel
privacy protection is weak (low entropy BD ADDR)
pairing protocol weak against passive attacks (next slides)
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Key Establishment (In)security

Theorem
The pairing protocol is secure if either PIN has large entropy or the
protocol is run through a private channel (under some “reasonable
assumptions” about the cryptographic algorithms).

, a cheap pragmatic security/ pretty weak security

devastating sniffing attacks in other cases! (Jakobsson-Wetzel 2001)
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Sniffing + Offline Attack

Assumption: pairing not made in a private environment (channel not
confidential) and guessable PIN (lazzy operator)

1 sniff the pairing protocol, get IN RAND,CA,CB

2 −→ can compute Klink from PIN
3 sniff a peer-authentication protocol, get rand,F (rand,Klink)

4 −→ can check a guess on Klink

5 run an offline exhaustive search on PIN
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Online Impersonation Attack

Adversary Slave

receive PIN
IN RAND−−−−−−−−−−−−−→

CA−−−−−−−−−−−−−→
CB←−−−−−−−−−−−−− compute Klink

AU RandB−−−−−−−−−−−−−→
RESB←−−−−−−−−−−−−− RESB = E1(Klink,AU RandB)

exhaustive search on PIN s.t.
RESB = E1(f (PIN, IN RAND,CA,CB),AU RandB)
compute Klink = f (PIN, IN RAND,CA,CB)

AU RandA←−−−−−−−−−−−−−
RESA = E1(Klink,AU RandB)

RESA−−−−−−−−−−−−−→
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Possible Countermeasures

do not use short PIN
→ not realistic
only make pairing in a bunker
→ not realistic
live with it and make it resilient
→ feasible by refreshing Klink
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Pairing in Two Phases: Preparing and Repairing

Master A Slave B

user inputs PIN code
pick IN RAND IN RAND−−−−−−−−−→ user inputs PIN code

Kinit = E22(PIN, IN RAND) Kinit = E22(PIN, IN RAND)
pick LK RANDA pick LK RANDB

CA = LK RANDA ⊕ Kinit CB = LK RANDB ⊕ Kinit
CA−−−−−−−−−→
CB←−−−−−−−−−

LK RANDB = CB ⊕ Kinit LK RANDA = CA ⊕ Kinit
compute Klink compute Klink

preparing and repairing

SV 2016–17 Case Studies I CryptoSec 698 / 1037



A Possible Better Usage

preparing

?

PIN

-K0 repairing -K1 repairing K2· · ·

if Kt−1 is compromised and repairing is private, then Kt is safe
if Ki is securely set up and if Ki+t is the first compromised key, all
communications using Ki , . . . ,Ki+t−1 are safe (forward secrecy)
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Bluetooth v2.0 Summary

light weight cryptography

initial authenticated channel by human interaction with devices
key exchanged based on a PIN and E21, E22 (pairing)
derivation of a single 128-bit long term link key
secure channel based on E0, E1, E3

several missing security properties: packet authentication,
detection of packet loss, privacy, ...
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Bluetooth v2.0 (In)security

Current (mode 3) security is rather poor:

confidentiality , (attacks still academic so far)
message integrity /
message authentication / (auth. by encryption without integrity)
frame freshness , (based on clock value)
key establishment v2.0 / (pragmatic repairing possible)
frame sequentiality / (message loss)
privacy /
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Moral

PIN has low entropy
(humans cannot generate ephemeral PINs with high entropy)

offline passive key recovery:
key agreement is based on conventional cryptography (so cannot
resist to passive adversaries)
online impersonation attack:
assuming the adversary is second to authenticate itself, the
password-based key agreement does not even resist
impersonation
next generation needs

be user friendly
be device friendly (no expensive crypto)
resist passive and active adversaries

→ use SAS-based cryptography (to be seen in Chapter 9)
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Bluetooth v2.1: Secure Simple Pairing

4 variants
numeric comparison
passkey entry
just works (same as numeric comparison with no human work)
out-of-band (use an ad-hoc secure channel e.g. cable or near
field communication)

resist active adversary
resist passive adversary only (out-of-band may resist to active
adversaries depending on the secure channel)
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Common Protocol

Device A Device B

ECDH
DHKey DHKey

authentication stage 1
(protocol dependent)

NA,NB, rA, rB NA,NB, rA, rB

EA = f3(· · · ) EA−−−−−−−−−−−−−→ check

check
EB←−−−−−−−−−−−−− EB = f3(· · · )

LK = f2(· · · ) LK = f2(· · · )
secure channel
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Common Protocol
step 1: public key exchange
exchange ECDH public keys using standard parameters (may be
ephemeral or static) leading to a key DHKey
steps 2–8: authentication stage 1 (protocol dependent)
this stage authenticates the ECDH public keys and exchange
some values NA, NB, rA, rB

steps 9–11: authentication stage 2
mutual authentication after ECDH protocol using NA, NB, rA, rB:
A resp. B produces EA resp. EB and checks EB resp. EA

EA = f3(DHKey,NA,NB, rB, IOcapA,BD ADDRA,BD ADDRB)

EB = f3(DHKey,NB,NA, rA, IOcapB,BD ADDRB,BD ADDRA)

step 12: link key calculation
key derivation from DHKey, Na, Nb, and the addresses

LK = f2(DHKey,Nmaster,Nslave, btlk,BD ADDRmaster,BD ADDRslave)

step 13: encryption (business as usual)
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ECDH Common Protocol
domain parameters:
use secp192r1 = P192, the elliptic curve of order r over the Zp

field defined by y2 = x3 + ax + b which is generated by G:

p = 2192 − 264 − 1

a = −3 mod p

b = 2455155546008943817740293915197451784769108058161191238065

r = 6277101735386680763835789423176059013767194773182842284081

Gx = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

= 602046282375688656758213480587526111916698976636884684818

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

= 174050332293622031404857552280219410364023488927386650641

note that 2192 − 295 < r < 2192 and r is prime
key agreement function: given an integer u and a point V ,
P192(u,V ) is the x-coordinate of the point uV

DHKey = P192(SKA,PKB) = P192(SKB,PKA)
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The New Bluetooth Menagery

f1(U,V ,X ,Z ) = trunc128 (HMACX (U∥V∥Z ))
g(U,V ,X ,Y ) = SHA256X (U∥V∥X∥Y ) mod 232

f2(W ,N1,N2, keyID,A1,A2) = trunc128 (HMACW (N1∥N2∥keyID∥A1∥A2))
f3(W ,N1,N2,R, IOcap,A1,A2) = trunc128 (HMACW (N1∥N2∥R∥IOcap∥A1∥A2))

variable Ai Ni U V W X Y Z keyID IOcap
# bits 48 128 192 192 192 128 128 8 32 48

HMAC is HMAC-SHA256

the value of keyID for “btlk” is 0x62746c6b
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Bluetooth Simple Secure Pairing Variants — i
Numeric Comparison

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

set rA = rB = 0 set rA = rB = 0
cB←−−−−−−−−−−−−− cB ← f1(PKB, P̂KA,NB, 0)
NA−−−−−−−−−−−−−→

ĉB
?
= f1(P̂KB,PKA, N̂B , 0)

NB←−−−−−−−−−−−−−
VA ← g(PKA, P̂KB,NA, N̂B) VB ← g(P̂KA,PKB, N̂A,NB)

display VA display VB

check VA = VB

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB
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Security from Human-Monitored Short String
Authentication

Alice Bob-� insecure -�

? ?

AUTHENTICATION
INTEGRITY

communication over a cheap/efficient but insecure channel
security set up with the help of a short authenticated string (SAS)
authentication based on human monitoring
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Numeric Comparison Analysis

Device A Adversary Device B
input: PKA, P̂KB input: P̂KA,PKB

pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

set rA = rB = 0 set rA = rB = 0
ĉB←−−−??

cB←−−− cB ← f1(PKB, P̂KA,NB, 0)
NA−−−→??

N̂A−−−→

ĉB
?
= f1(P̂KB,PKA, N̂B, 0)

N̂B←−−−??
NB←−−−

VA ← g(PKA, P̂KB,NA, N̂B) VB ← g(P̂KA,PKB, N̂A,NB)
display VA display VB

check VA = VB

output: NA, N̂B, rA, rB output: N̂A,NB , rA, rB

if (PKA, P̂KB) ̸= (P̂KA,PKB):
Adversary does not know VB before he selects N̂A
Adversary does not know VA (cannot influence it) before NA is given
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Note on Numerical Comparison

idea: cB is a commitment to NB which is revealed after NA is
received, V ’s are hash of the public keys and N ’s
if the public keys are corrupted, the adversary must adapt the N ’s
so that the v ’s match but no N is free as soon as one is revealed
“just works” is a variant where no check is made
(vulnerable to active attacks)
presumably, not many human users will carefully compare the
32-bit strings VA and VB
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Bluetooth Simple Secure Pairing Variants — ii
Passkey Entry

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

type r1 · · · rk

FOR i = 1 to k
pick NA ∈U {0, 1}128 pick NB ∈U {0, 1}128

cA ← f1(PKA, P̂KB,NA, ri)
cA−−−−−−−−−−−−−→
cB←−−−−−−−−−−−−− cB ← f1(PKB, P̂KA,NB, ri)
NA−−−−−−−−−−−−−→ ĉA

?
= f1(P̂KA,PKB, N̂A, ri)

ĉB
?
= f1(P̂KB ,PKA, N̂B, ri)

NB←−−−−−−−−−−−−−
ENDFOR

keep the last NA and NB

output: NA, N̂B, r , r output: N̂A,NB, r , r

note: not really SAS-based since r must be secret until the end of the
protocol
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Pass Entry Analysis

If (PKA, P̂KB) ̸= (P̂KA,PKB):
Adversary cannot forge ĉA and ĉB with a probability higher than 1

2
in each iteration (by trying to guess ri )
So, he cannot pass with probability higher than 2−k
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Bluetooth Simple Secure Pairing Variants — iii
Out-of-Band

Device A Device B
input: PKA, P̂KB input: P̂KA,PKB

pick rA ∈U {0, 1}128 pick rB ∈U {0, 1}128

cA ← f1(PKA,PKA, rA, 0) cB ← f1(PKB,PKB, rB, 0)
authenticateA(rA,cA)−−−−−−−−−−−−−→
authenticateB(rB ,cB)←−−−−−−−−−−−−−

cB
?
= f1(P̂KB, P̂KB, rB, 0) cA

?
= f1(P̂KA, P̂KA, rA, 0)

pick NA ∈U {0, 1}128 NA−−−−−−−−−−−−−→
NB←−−−−−−−−−−−−− pick NB ∈U {0, 1}128

output: NA, N̂B, rA, rB output: N̂A,NB, rA, rB
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Bluetooth Low Energy (LE) in v4.0

previously known as WiBree (developped by Nokia)
similar association models, but no public-key crypto anymore
some ill-designed association model
a strange key hierarchy with not so much entropy in session key
derivation
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7 Case Studies I
Mobile Telephony
WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains
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SAS-Based Secure Comunication

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Message Authentication Protocols
Alice (IDA) Bob
input: m

-
�

-
�

-
�

-
�

output: ID, m̂

functionality: ID = IDA and m̂ = m
security: if ID = IDA then m̂ = m
application: semi-A key agreement
(m is a symmetric key for secure channel so that Bob knows he
is talking to Alice)
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Message Cross-Authentication Protocols

Alice (IDA) Bob (IDB)
input: mA input: mB

-
�

-
�

-
�

-
�

output: IDB,mB output: IDA,mA

two message authentication protocols at the same time
application: authenticated key agreement
(mA and mB are Diffie-Hellman public keys)
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Application I: Personal Area Network Setup

Device 1 Device 2

Operator

request, m, c -�
d

-

SAS
�

SAS

U
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Application II: Voice over IP
Existing Standard: ZRTP

Alan Jon

zfone1 zfone2

?

verified

6

SAS2: y71o

6
SAS1: sgmf

(voice recognition) ?

verified

-
�
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Application III: Peer-to-Peer PGP Channel Setup
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Application IV: Disaster Recovery

on the road, after a key loss (computer crash, stolen laptop)
−→ set up of a security association
PKI collapse (company bankrupt, main key sold, act of God)
−→ set up of a security association
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Semi-Authenticated Non-Interactive: Application
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Folklore (Balfanz-Smetters-Stewart-Chi Wong
2002)

Alice Bob
input: m

m−−−−−−−−−−−−−−−−−−−−−−→
h← H(m)

authenticateAlice(h)−−−−−−−−−−−−−−−−−−−−−−→ check h = H(m̂)

output: Alice, m̂

, efficient, provably security assuming collision resistance/ this requires SAS of at least 160 bits
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A Collision Attack

if SAS is so short that we can find collisions h(m) = h(m′), m ̸= m′,
make Alice run the protocol with m but change the message to Bob to
m′

Alice Eve Bob
input: m

m−−−−−→ m′

−−−−−→

h← H(m)
authenticateAlice(h)−−−−−−−−−−−−−−−−−−−−→ check h = H(m′)

output: Alice,m′
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Pasini-Vaudenay 2006: SAS-Based NIMAP

Alice Bob
input: m

c ← commit(m; r)
m∥r−−−−−−−−−−−−−−→ ĉ ← commit(m̂, r̂)

SAS← H(c)
authenticateAlice(SAS)−−−−−−−−−−−−−−→ check SAS = H(ĉ)

output: Alice, m̂

, provable security, efficient, can work with SAS of 80 bits (the least possible for NIMAP)
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Semi-Authenticated Interactive
Vaudenay 2005

Alice Bob
input: m

pick RA ∈U {0, 1}k pick RB ∈U {0, 1}k

c ← commit(m,RA; r)
m∥c−−−−−−−−−−−−−−→
RB←−−−−−−−−−−−−−−

RA∥r−−−−−−−−−−−−−−→ ĉ ?
= commit(m̂, R̂A; r̂)

SAS← RA ⊕ R̂B
authenticateAlice(SAS)−−−−−−−−−−−−−−→ check SAS = R̂A ⊕ RB

output: Alice, m̂

, provable security, efficient, can work with SAS of 20 bits

SV 2016–17 Case Studies I CryptoSec 728 / 1037



Authenticated Interactive
Zimmermann 1995: PGPfone

Alice Bob

pick xA, yA ← gxA pick xB, yB ← gxB

commit to (yA)−−−−−−−−−−−−−−−→
yB←−−−−−−−−−−−−−−−

zA ← ŷxA
B

open commitment−−−−−−−−−−−−−−−→ zB ← ŷxB
A

SAS← truncH(yA∥ŷB)
authenticateAlice(SAS)−−−−−−−−−−−−−−−→ SAS ?

= truncH(ŷA∥yB)

check SAS is the same
authenticateBob(SAS)←−−−−−−−−−−−−−−−

output: Bob, zA output: Alice, zB
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Attack on a Variant Without Commitment

Alice Bob

pick xA pick x̂A, ŷA ← g x̂A pick xB

yA ← gxA
yA−−−→

ŷA−−−→ yB ← gxB

pick x̂B , ŷB ← g x̂B s.t.
yB←−−−

ŷB←−−− h(yA∥ŷB) = h(ŷA∥yB)

zA ← ŷxA
B zA ← y x̂B

A , zB ← y x̂A
B zB ← ŷxB

A

SAS← h(yA∥ŷB)
authenticateAlice(SAS)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ SAS ?
= h(ŷA∥yB)

check SAS
authenticateBob(SAS)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

output: Bob, zA zA, zB output: Alice, zB
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Conclusion on Manual Key Establishment

secure communications over insecure channels can be manually
set up by a human operator
public-key -less solutions: although pretty weak, Bluetooth
standards can offer a pragmatic costless security when properly
used
applications: personal area network, VoIP, peer-to-peer, disaster
rescue
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7 Case Studies I
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WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains
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Application: Access Control

many scenarios:
access of human user to a computer
access of a person to a door: “Sésame”
access of human user to a mailbox
access of human user to a service through the Internet

access control = peer authentication
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Password Authentication Protocol (Step 1)

PROBLEM: authenticate a client to a server
HYPOTHESIS 1: channel to server keeps confidentiality
example:

physical access
secure channel from semi-authenticated setup
(client authenticates the server e.g. using a PKI)
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Password Authentication Protocol — i

server keeps a database of (ID,password) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID,w)
check w = password

Problem: if adversary has access to database he can get the
password
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Password Authentication Protocol — ii

server keeps a database of (ID,OW(password)) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID,w)
check w = OW(password)

Problem: multi-target invertion attacks
(specially when password have low entropy)
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Password Authentication Protocol — iii

server keeps a database of (ID, salt,OW(password, salt)) entries
channel to server keeps confidentiality

Client Server

ID,password−−−−−−−−−−−−−−→ get entry (ID, salt,w)
check w = OW(password, salt)

advantages:
avoid multi-target bruteforce attacks from database

(does not avoid single-target exhaustive search from database)
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Password Access Control Using Salt

Password Password

- �

?

-

?

Salt

Hash Hash

- - =

?

Enrolment Record Control
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Example: UNIX Password Access Protocol

User Work station
login?←−−−−−−−−−−−−−−−−−−−

type ID ID−−−−−−−−−−−−−−−−−−−→
password?←−−−−−−−−−−−−−−−−−−−

type w w−−−−−−−−−−−−−−−−−−−→
check using a
database storing
(ID, salt,OW(w , salt))
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UNIX Passwords

clock

6

6
salt (12)

6 6 6

0 -≈DES -≈DES - · · · -≈DES -/etc/passwd

? ? ?

w (56) ID

?
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Online and Offline Passwords Recovery

online offline
method try to connect us-

ing a guess for
the password until
it works

get a witness look
for a guess which is
consistent with the
witness

countermeasure
increasing
delay before
new attempt
blocked after
xx trials

password with
large entropy
use salt
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Examples

Basic Access Control in HTTP [RFC2617]
IMAP4rev1 [RFC2060]
tequila authentication at EPFL
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Pros and Cons

Pros
the server does not keep the password (only a digest)
the client need not run any calculation (nice for human clients!)

Cons
does not work through a channel without confidentiality
protection: the password can be compromised
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Password Authentication Protocol (Step 2)

PROBLEM: authenticate a client to a server
HYPOTHESIS 2: adversary is passive
example: unencrypted semi-authenticated channel (client
authenticates the server e.g. using a PKI but they are not
allowed to use encryption)

SV 2016–17 Case Studies I CryptoSec 745 / 1037



Passive vs Active Adversary

passive adversary: only listen to communications and tries to
get credential to later pass access control
active adversary: can interfere with client or server
communications e.g. man-in-the-middle
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Challenge/Response Protocol

server keeps a database of (ID, secret) entries
adversary is passive

Client Server

ID−−−−−−−−−−−−−−→ get entry (ID,w)
challenge c←−−−−−−−−−−−−−− pick c at random

r = PRFsecret(c)
response r−−−−−−−−−−−−−−→ check r = PRFw (c)
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Challenge/Response Protocol

Secret Secret

- �

?

Challenge

Response

?

random

PRF PRF

- =

?

Client Server
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Pros and Cons

Pros
resistance to passive adversary (if secret has large entropy)

Cons
the server must keep the secret and strongly protect the
database
vulnerable to relay attacks
vulnerable to passive offline attacks (if secret has low entropy)
vulnerable to active adversary
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Examples

GSM
CHAP Access Control in PPP [RFC1334]
Digest Access Control in HTTP [RFC2617]
Bluetooth peer authentication
access control to UBS account (later in this chapter)
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The GSM Case

SIM Telephone Radio Network Operator

A5

?

-

Plaintext

A8

A3

-� Ciphertext
A5

?

�

Plaintext

-Response
Compare � A3

A8

Random

?
Challenge

??

Key

Temporary key

?

Temporary key

?

Key

?
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S/Key - OTP [RFC2289]

possible hash function H: md4, md5, sha1

Client Server

choose w w−−−−−−−−−−−−−−→ s at random
store p1, . . . , pN

s,p1,...,pN←−−−−−−−−−−−−−− pi ← HN+1−i(w , s)

i ← 1 i ← 1, p ← p0
...

request−−−−−−−−−−−−−−→
recompute or from list

otp-⟨H⟩ i s←−−−−−−−−−−−−−−
y ← pi

y−−−−−−−−−−−−−−→ check H(y) = p
... p ← y , i ← i + 1

challenges must be authenticated
responses shall be protected against delays in delivery
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Pros and Cons

Pros
the server does not keep the secret
resistance to passive adversary

Cons
used with a single server (or securely synchronized ones)
not user-friendly: user has to work (e.g. wear a long list and
check passwords in it)
still vulnerable to relay attacks
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Human Factor against Password Access Control

weak passwords: short, trivial (in dictionaries, first name)
long passwords are hard to remember
people are lazy (or don’t want to be bothered)
write passwords on post’it, bypass security protocols, ...
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Alternate Authentication Means

from what you know: password,always available (unless forgotten)/must address the human factor
from what you possess: secure token (smart card, dongle,
secureID, key lock),tamper proof, can perform cryptographic operations/can be stolen, lost, forgotten
from what you are: biometrics,always available/fuzzy, not very secure, threat to humankind

strong authentication = authentication using at least two methods
(2-way authentication)
example: smart card + PIN code
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Example: UBS E-Banking

card reader
with dis-
play and
keyboard

smart card

web interface
� challenge

-
response

6
challenge

?
response

1 type contract number
2 insert smart card
3 switch calculator on
4 type PIN code
5 read challenge, type it on calculator keyboard
6 read response, type it on browser interface

smart card + external reader (calculator)
challenge-response protocol
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Password-based Authenticated Key Exchange
(PAKE)

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY
(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Password vs Secret Keys

secret keys are stored by computers (can be pretty long)
passwords are also kept in human memories
typically: password have less than 48 bits of entropy
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How to Solve the Problem?

with no other setup assumptions (no secure token)
cannot assume a password with large entropy
find a pragmatic and technical solution
−→ leak no information which could be used to run offline attacks
−→ live with online dictionary attacks (slow down tests, audit, ...)
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Online Dictionary Attack: a Generic Attack

generic
1: repeat
2: make a new guess ŵ following a dictionary
3: simulate Alice with password ŵ
4: launch an instance of the Bob protocol
5: make the simulator and Bob talk to each

other
6: until Bob accepts
7: print ŵ

a protocol is secure if this attack is the best one
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Password-Based Authenticated Key Agreement
Alice Bob

password: w password: w
random tape: rA random tape: rB

-
�

-
�

-
�

output: KA output: KB

functionality: KA = KB = K
security

active adversary learns (almost) nothing about w
if party ends on K the active adversary has no clue about K
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A New Primitive

functionality
ProtoA(w)↔ProtoB(w)
↓ ↓
K = K

security
confidentiality of w ,K

Alice and Bob, ProtoA, ProtoB

components

PAKE
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Subproblem: Password-based Access Control
Alice Bob

password: w password: w
random tape: rA random tape: rB

-
�

-
�

-
�

output: ok

functionality: the protocol completes
security

active adversary learns (almost) nothing about w
if Bob completes then Alice has the same view on the protocol
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1st (Bad) Example: Password Access Control

Alice Bob
password: w password: w

w−−−−−−−−−−−−−−−−−−−−−−→ check w = ŵ

output: ok

w is disclosed
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2nd (Bad) Example: Challenge/Response Protocol

Alice (ID) Bob
password: w password: w

request−−−−−−−−−−−−−−→
chall←−−−−−−−−−−−−−− pick chall

res = MACw (chall) res−−−−−−−−−−−−−−→ check res = MACw (chall)

output: ok

subject to offline exhaustive search
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Key Agreement: a (Bad) Idea

Alice Bob
password: w password: w

pick xA, yA ← gxA
yA∥MACw (yA)−−−−−−−−−−−−−−−−−−−→ check MAC

check MAC
yB∥MACw (yB)←−−−−−−−−−−−−−−−−−−− pick xB, yB ← gxB

zA ← yxA
B zB ← yxB

A
(z = gxAxB )

output: zA output: zB

subject to offline exhaustive search
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Key Agreement: Another (Bad) Idea

Alice Bob
password: w password: w

RSA.Gen→ (N,e,d) N,e−−−−−−−−−−→ pick K

K̂ ← Decw (ĉ)d mod N c←−−−−−−−−−− c ← Encw (K e mod N)

output: K̂ output: K

if K can later be tested, offline exhaustive search possible

partition attack: eliminate all ŵ such that Decŵ(c) ≥ N
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Existing Protocols

Bellovin-Merritt 1992: EKE
general construction paradigm
can be based on ElGamal, Diffie-Hellman, RSA or other
informal (no security proof)

Lucks 1997: OKE (later broken)
Wu 1997: SRP (Secure Remote Password), quite popular
EKE variants based on Diffie-Hellman

Bellare-Pointcheval-Rogaway 2000: EKE2
Boyko-MacKenzie-Patel 2000: PAK
Bellare-Rogaway 2000: AuthA (several variants)
Katz-Ostrovski-Yung 2001 (security proof without random oracles)
MacKenzie 2002: the PAK suite (PPK, PAK-X, PAK-Y, PAK-Z, ...)
Abdalla-Chevassut-Pointcheval 2005: another EKE+AuthA variant
others: SPEKE, augmented EKE, B-SPEKE, AMP, Jiang-Gong, ...

protocols based on RSA
MacKenzie-Patel-Swaminathan 2000: SNAPI
Zhang 2004: PEKEP
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EKE (Bellovin-Merritt 1992)

Generator

?

-

Public keySecret key

Password 6
?

Password6
? ?

Decrypt
Public key-Encrypt

Random

Key
?

Encrypt�Encrypt�Decrypt�Decrypt

?
Key
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EKE (Bellovin-Merritt 1992) based on ElGamal

Alice Bob
password: w password: w

pick xA, yA ← gxA pick xB, yB ← gxB

pick RA ∈U {0, 1}k , pick RB ∈U {0, 1}k

cA ← encw (yA)
cA−−−−−−−−−→ ŷA ← decw (ĉA)

pick kB, z ← kB ŷxB
A

dB ← enckB (RB)

ŷB∥ẑ ← decw (ĉB)
cB∥dB←−−−−−−−−− cB ← encw (yB∥z)

kA ← ẑ/ŷxA
B

R̂B ← deckA(d̂B)

dA ← enckA(RA∥R̂B)
dA−−−−−−−−−→ R̂A∥R̂ ← deckB (d̂A)

check R̂ = RB

check RA = deckA(êB)
eB←−−−−−−−−− eB ← enckB (R̂A)

output: kA output: kB
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Wu 2002: Secure Remote Password Protocol
(SRP-6)

Alice Bob
password: w secret: V = gH(s∥IDA∥w)

db entry: IDA∥s∥group∥V
IDA−−−−→

check ĝroup, W ← H(ŝ∥IDA∥w)
s∥group←−−−− retreive s∥group∥V

pick xA, yA ← gxA
yA−−−−→ pick xB, t ← 3V + gxB

r̂ ← H(yA∥t̂)
t←−−−− r ← H(ŷA∥t)

kA ← H((̂t − 3gW )xA+r̂W ) kB ← H((ŷAV r )xB )

dA ← H(yA∥t̂∥kA)
dA−−−−→ check d̂A = H(ŷA∥t∥kB)

check d̂B = H(yA∥dA∥kA)
dB←−−−− dB ← H(ŷA∥d̂A∥kB)

output: H(kA) output: H(kB)

(group = (g, p), g generator of Z∗p, p and p−1
2 prime)
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References on Password-Based Cryptography

C. Boyd, A. Mathuria.
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Information Security and Cryptography, Springer Verlag, 2003.
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In IEEE symposium on Research in Security and Privacy, IEEE
Computer Society Press, pp. 72–84, 1992.
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7 Case Studies I
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WEP/WPA/WPA2
Bluetooth
Cryptography Based on Short Authenticated Strings
Access Control
Forward Secrecy: the Case of Signal
Block Chains
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Signal

used in WhatsApp
secure messaging (confidentiality, authenticity, integrity of
messages)
forward and future secrecy (confidentiality preserved even
though secrets leak)
deniability (no transferable proof of message authorship leaks)
asynchronous (can be done offline)
detect replay/reorder/deletion attacks
allow decryption of out-of-order messages
don’t leak metadata
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Initial Key Agreement
(keys are in Curve25519)

Alice Server Bob

Alice,aG−−−−−−−−−−−−−→ register
Bob,bG,xb,i G←−−−−−−−−−−−−−

Bob?−−−−−−−−−−−−−→

xb,eph ← xb,i G
bG,xb,i G←−−−−−−−−−−−−− erase xb,i G

pick xa,eph
state: (bG, xb,ephG, xa,ephG)

compute s
xa,ephG,xb,eph,Encsecret(msg)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[s = axb,ephG∥bxa,ephG∥xa,ephxb,ephG]

Alice?←−−−−−−−−−−−−−
aG−−−−−−−−−−−−−→ compute s

state: (aG, xa,ephG, xb,ephG)
decrypt

erase xb,eph
pick xb,eph

compute s
xb,ephG,xa,eph,Encsecret(msg)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− compute s

decrypt
erase xa,eph

...
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Ratchet

A ratchet is a mechanical device which can only move forward.

forward secrecy: protects past sessions against future
compromises of long-term secret keys
future secrecy: protects future sessions against compromises
of ephemeral secret keys
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Double Ratchet in Signal

3DH: a ratchet for every time the direction of exchange changes
needs synchronization between the two participants
good forward and future secrecy
a ratchet for every message in the same direction
no real future secrecy
plausible deniability
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Ratchet for Messages

given xa,ephxb,ephG, Alice and Bob devide a sequence
CK0,MK0,CK1,MK1, . . .

MKi+1 = HMAC-SHA256CKi (0)
CKi+1 = HMAC-SHA256CKi (1)

the message i is encrypted using MKi with encrypt-then-MAC using
AES256 and HMAC-SHA256

other techniques to send sequence numbers, total number of
messages, etc
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Cryptography Based on Short Authenticated Strings
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Bitcoins

virtual currency
launched in 2009 by an anonymous guy
(pseudo Satoshi Nakamoto)
completely decentralized, there is no authority
anyone creates its own account
broadcast transactions on a public ledger
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A Bitcoin Transaction

“I, pk, holder of UTXO link1, . . . , linkn pay x1 to pk1, ..., xm to pkm”
[signature]

UTXO = unspent transaction output
requirement: x1 + · · ·+ xm equals sum of given UTXO
then, amounts from [link1], ..., [linkn] to pk become spent and
amounts from transaction become new UTXO with a link
problem: how to make sure that UTXO is really unspent
equivalent problem: how to make everybody “see” the same list
of transactions
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Block Chain

a block from the block chain:
hash of the previous block (except for the genesis block)
list of transactions from the last period
proof-of-work (PoW) based on the above

scheme for miners (every 10 minutes):
take the longest valid block chain
collect all broadcast valid transactions with respect to this chain
make a new block and PoW
broadcast it
(the block can be used as an UTXO reward to the miner)
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Proof-ok-Work

block shall contains for PoW value such that

SHA256(block) starts with 69 zero bits

69 is the difficulty of June 2016
it is constantly calibrated
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Conclusion

Lightweight networks based on conventional cryptography only
(GSM, Bluetooth, ...)
Although limited, we can make many protocols with only
conventional cryptography
Assembling cryptographic primitives in a protocol is not trivial
access control based on

what you know (password)
what you have (a key in a secure token for challenge-response)
what you are (biometrics)

New notions: forward secrecy, plausible deniability, block chain,
proof-of-work
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Must Be Known

GSM security infrastructure
mobile telephony security
Bluetooth pairing
challenge-response protocol
password-based cryptography
techniques for access control
how PAKE works
foward secrecy
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Train Yourself

bad EKE variant:
final exam 2014–15 ex4
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Roadmap

Diffie-Hellman: new directions in cryptography
RSA standards for encryption and signature
the ElGamal signature dynasty
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8 Public-Key Cryptography
Public-Key Cryptography
Diffie-Hellman Key Exchange
RSA Cryptography
ElGamal Cryptography
Selecting Key Lengths
Formalism
Towards Post-Quantum Cryptography?
Other Primitives
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Cryptographic Primitive (Reminder)

functionality security

components

cryptographic
primitive
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Symmetric Encryption (Reminder)

functionality
Gen→ K

DecK (EncK (X )) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

symmetric
encryption
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Diffie-Hellman
“New Directions in Cryptography” (1976)

[Merkle, Hellman, Diffie]

notion of “trapdoor permutation” (no instance)
building a public-key cryptosystem from it
building a digital signature scheme from it
key agreement protocol
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Trapdoor Permutation

we use an encryption Perm that is easy to compute in one way
...but hard in the other (to compute InvPerm)
...except using a trapdoor K
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Trapdoor Permutation

functionality
Gen→ (param,K )

InvPermK (Permparam(X )) = X

security
confidentiality is preserved

Alice and Bob, Generator, Perm, InvPerm
components

trapdoor
permutation
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Public-Key Cryptosystem

functionality
Gen→ (Kp,Ks)

DecKs (EncKp (X )) = X

security
confidentiality is preserved

Alice and Bob, Generator, Encrypt, Decrypt
components

trapdoor
permutation
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Confidentiality using an Authenticated Channel
Public Key Cryptosystem

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Enc - - Dec -Message�

�
Adversary
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Confidentiality using an Authenticated Channel
Key Exchange Protocol

ProtoBobProtoAlice

6KeyKey

-� AUTHENTICATION
INTEGRITY

6

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Key Exchange Protocol

functionality
ProtoA(rA)↔ProtoB(rB)
↓ ↓

KA = KB

security
confidentiality of K

Alice and Bob, ProtoA, ProtoB

components

key
exchange
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Key Exchange Protocol

Alice Bob
random tape: rA random tape: rB

-
�

-
�

-
�

output: KA output: KB

functionality: KA = KB = K
security: passive adversary cannot infer K from the exchanges
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Terminology

key exchange: there is no exchange of keys, just exchange of
data to derive a common secret key
often assumes no prior common secret

= key agreement: same
= key establishment: same (may be more general)

key transfer: one participant chooses a key and sends it to the
second participant
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Digital Signature Scheme

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary
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Digital Signature Primitive

functionality
Gen→ (Kp,Ks)

VerKp (SigKs
(X ; r)) = X

security
signature is non-repudiable

Alice and Bob, Gen, Sig, Ver
components

digital
signature
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Big Picture

confidential transmission authenticated transmission

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
MAC - - Check

-
ok?

-Message
�

�
Adversary

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
Sign - - Verify

-
ok?

-Message
�

�
Adversary
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Application: Certificates

Client Server-� insecure -�

?

�Authority
K A

p Kp

AUTHENTICATION AUTHENTICATION

?

certificate

certificate = signature(“I certify that public key Kp belongs to S”)
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Static versus Ephemeral Diffie-Hellman

Ephemeral DH: X and Y are fresh (and destroyed after protocol
completes)
Static DH: X and Y are used like public keys
Semi-static DH: one key is fixed (public key), the other is fresh
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Ephemeral Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g

Alice Bob

pick x at random
X ← gx X−−−−−−−−−−−−−→

Y←−−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x (K = gxy ) K ← X y

secureK←−−−−−−−−−−−−→
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Semi-Static Diffie-Hellman Key Agreement
Protocol

Assume a group generated by some g

Alice Bob
secret key: x

public key: X = gx

Y←−−−−−−−−−−−−− pick y at random
Y ← gy

K ← Y x (K = gxy ) K ← X y

secureK←−−−−−−−−−−−−→
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Static Diffie-Hellman Key Agreement Protocol

Assume a group generated by some g

Alice Bob
secret key: x secret key: y

public key: X = gx public key: Y = gy

K ← Y x (K = gxy ) K ← X y

secureK←−−−−−−−−−−−−→
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Forward Secrecy

forward secrecy: communication is still private if long term
secret keys are disclosed
example: ephemeral Diffie-Hellman (no long term secret)
no forward secrecy: communication might be decrypted if long
term secret keys leak in the future
example: static or semi-static Diffie-Hellman
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Diffie-Hellman Cryptography

Diffie-Hellman
6

problem to instanciate

* RSA

j ElGamal

trapdoor permutation: operation in Z∗n which can be inverted with
the factorization of n
probabilistic encryption: encryption returns gx along with
symEncKDF(Y x )(message) for Y x = DH(g, gx ,Y )
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Rivest-Shamir-Adleman (RSA)
(1978)

[Shamir, Rivest, Adleman]

concrete trapdoor permutation
−→ public-key cryptosystem
−→ signature scheme
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Plain RSA

Generator

6Secret key d, NPublic key e, N 6 AUTHENTICATION
INTEGRITY

-Message
x Encrypt -Ciphertext

xe mod N
-

y Decrypt -Message

yd mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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Why “Plain” RSA

plain RSA
= textbook RSA
= vanilla RSA
= raw RSA
= RSA for mathematicians

in practice, things are a little more complicated because
messages are not elements of ZN

RSA has homomorphic properties (Enc(ab) = Enc(a)Enc(b))
which are quite dangerous
RSA engineering leads us to security concerns
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PKCS#1v1.5

(Modulus of k bytes, message M of at most k − 11 bytes.)
Encryption:

1 generate a pseudorandom
string PS of non-zero bytes so
that M∥PS is of k − 3 bytes

2 construct string
00∥02∥PS∥00∥M of k bytes

3 convert it into an integer
4 perform the plain RSA

encryption
5 convert the result into a string

of k bytes

Decryption:
1 convert the ciphertext into an

integer, reject it if it is greater
than the modulus

2 perform the plain RSA
decryption and obtain another
integer

3 convert back the integer into a
byte string

4 check that the string has the
00∥02∥PS∥00∥M format for
some byte strings PS and M
where PS has no zero bytes

5 output M
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PKCS#1v1.5 Encryption

ciphertext
?

Enc
?

00 02 PS 00 M
?

random

?

message
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RSA-OAEP Encryption

(H(L) is a constant)

ciphertext
?

Enc
?

00 maskedSeed maskedDB
?

⊕� MGF�

?

⊕-MGF-

?

?

seed
H(L) 0 · · · 01 M

?

message
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RSA-OAEP Decryption

(H(L) is a constant)

ciphertext
6

Dec

6

00 maskedSeed maskedDB

6
⊕� MGF�

6
⊕-MGF-

6 6
seed

H(L) 0 · · · 01 M

6
message
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Mask Generation Function in RSA-OAEP

The PKCS specifications further suggests an mask generation
function MGF1 which is based on a hash function. The MGF1ℓ(x)
string simply consists of the ℓ leading bytes of

H(x∥00000000)∥H(x∥00000001)∥H(x∥00000002)∥ · · ·

in which x is concatenated to a four-byte counter.
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Rabin Cryptosystem

Set up: find two prime numbers p and q, set N = pq and pick a
random B ∈ ZN (e.g. B = 0)

Messages: x ∈ ZN

Public key: B,N
Secret key: B, p, q
Encryption: E(x) = x(x + B) mod N

Decryption: D(y) is one of the four square roots of B2

4 + y minus B
2

y = x(x + B) ⇐⇒
(
x + B

2

)2
= B2

4 + y
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Plain Rabin Encryption (B = 0)

Generator

6Secret key p, qPublic key N 6 AUTHENTICATION
INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary

p, q prime
N = pq

6
?

x x2 mod N y √
y mod N
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Ensuring Non-Ambiguity in the Decryption

- -
xRedundancy Encryption -

x2
-

y Decryption -
�

Adversary

we add redundancy in the plaintext so that valid plaintexts are
spare
we make sure that no other square root has valid redundancy
(hard without Ks)
we take the only expected square root with valid redundancy
we reject ciphertexts which fail to decrypt
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Rabin Complexity

Generator: O(ℓ4) (prime numbers generation)
Encryption: O(ℓ2)

Decryption: O(ℓ3)
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SAEP: Simple OAEP Padding for Rabin

ciphertext
?

Enc
?

r
?

⊕� h �

?

r

?

00 · · · 0M
?

message

pad with enough 0’s to ensure non-ambiguity
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Signature with Message Recovery

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
X

Sign -Signature
σ

-
σ Extract

-
ok?

-Message
X�

�
Adversary
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Trapdoor Permutation to Signature with Message
Recovery

Generator

6 Public KeySecret Key 6AUTHENTICATION
INTEGRITY

-Message
X

InvPerm -Signature
σ

-
σ Perm -Message

X

�
�

Adversary
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Plain RSA Signature

Set up: find two random different prime numbers p and q of
size ℓ

2 bits. Set N = pq. Pick a random e until
gcd(e, (p − 1)(q − 1)) = 1. (Sometimes we pick special
constant e like e = 17 or e = 216 + 1.) Set
d = e−1 mod ((p − 1)(q − 1)).

Secret key: Ks = (d ,N).
Public key: Kp = (e,N).

Message: an element y ∈ ZN .
Signature generation: x = yd mod N.
Extraction: y = xe mod N.

(Signature with message recovery)
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Plain RSA Signature

Generator

6Secret key d, N Public key e, N6AUTHENTICATION
INTEGRITY

-Message
y Sign -Signature

yd mod N
-

x Extract -
xe mod N

�
�

Adversary

N = pq
φ(N) = (p − 1)(q − 1)

1 = gcd(e, φ(N))

d = e−1 mod φ(N)

6
?
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Trapdoor Permutation to Signature

-Message
X

Hash

?
X

-d
InvPerm

6σX , σ
-

X

?

Perm

U

Hash

�
d d

σ
?
X

Compare -
ok?

Generator

6
AUTHENTICATION

INTEGRITY

-

Secret Key Public Key

�
�

Adversary

SV 2016–17 Public-Key Cryptography CryptoSec 836 / 1037



More Generally: Hash-and-Sign Paradigm

-Message
X

Hash

?
X

-d
Sign

6σX , σ
-

X

?

Verify Hash�d

σ
?
X

-
ok?

Generator

6
AUTHENTICATION

INTEGRITY

-

Secret Key Public Key

�
�

Adversary
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PKCS#1v1.5

We are given a modulus N of k bytes.
1 hash the message (for instance with SHA-1) and get a message

digest.
2 encode the message digest and the identifier of the hash

algorithm into a string D.
3 pad it with a zero byte to the left, then with many FF bytes in

order to reach a length of k − 2 bytes, then with a 01 byte. We
obtain k − 1 bytes.

4 This byte string 00∥01∥FF · · ·FF∥00∥D is converted into an
integer.

5 compute the plain RSA signature.
6 convert the result into a string of k bytes.
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Signature Verification

1 convert the signature into an integer. Reject it if it is greater than
the modulus.

2 perform the plain RSA verification and obtain another integer.
3 convert back the integer into a byte string.
4 check that the string has the 00∥01∥FF . . .FF∥00∥D format for a

byte string D.
5 decode the data D and obtain the message digest and the hash

algorithm. Check that the hash algorithm is acceptable.
6 hash the message and check the message digest.
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PKCS#1v1.5 Signature

signature
?

Sign
?

00 01 FF· · · FF 00 D
?

H
?

message

RSA signature without message recovery
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RSA-PSS

signature
?

Sign
?

bcmaskedDB H
?

⊕� MGF�

?

H
?

?

0 · · · 01 salt

H(M)0 · · · 00 salt
?

H
?

message
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RSA-PSS Verification

signature
6

Extract

6

bcmaskedDB H

6
⊕� MGF�

6

H
= - 0/1

?

6

0 · · · 01 salt

H(M)0 · · · 00 salt
?

H
?

message
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ElGamal Signature

Public parameters: a large prime number p, a generator g of Z∗p.
Set up: generate a random x ∈ Zp−1 and compute

y = gx mod p.
Secret key: Ks = x .
Public key: Kp = y .

Message digest: h = H(M) ∈ Zp−1.
Signature generation: pick a random k ∈ Z∗p−1, compute

r = gk mod p and s = h−xr
k mod p − 1, the signature is

σ = (r , s).
Verification: check that y r r s ≡ gh (mod p) and 0 ≤ r < p.
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ElGamal Signature

Generator

y = gx mod p

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
M

k ∈ Z∗
p−1

r = gk mod p
s = H(M)−xr

k mod p − 1

Sign -
M, r , s

-
M, r , s

0 ≤ r < p
y r r s ≡ gH(M) (mod p)

Verify
-

ok?

-Message
M�

�
Adversary

p prime
g generator of Z∗

p
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Drawbacks of ElGamal Signatures

signatures are pretty long
security issues related to subgroups
lack of security proof for arbitrary public parameter
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The ElGamal Dynasty

1984 ElGamal signatures
1989 Schnorr signatures: introduced p and q
1995 DSA: US signatures
1995 Nyberg-Rueppel signatures
1997 Pointcheval-Vaudenay signatures
1998 KCDSA: Korean signatures
1998 ECDSA
...
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Generating the Public Parameters

pick a prime number q
take a random p = aq + 1 until it is prime
take a random number in Z∗p, raise it to the power a modulo p,
and get g
if g = 1, try again (otherwise, it must be of order q in Z∗p)
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Benefits

signatures are shorter
no proper subgroup (only {1} and the group itself)
some form of provable security (related to interactive proofs)
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DSA Signature (DSS)

Public parameters (p,q,g): pick a 160-bit prime number q, a large
prime number p = aq + 1, h of Z∗p raised to the power a,
g = ha mod p such that g ̸= 1 (an element of order q).

Set up: pick x ∈ Zq and compute y = gx mod p.
Secret key: Ks = x .
Public key: Kp = y .

Signature generation: pick a random k ∈ Z∗q , compute
r = (gk mod p) mod q, and s = H(M)+xr

k mod q, the
signature is σ = (r , s).

Verification: check that r =
(

g
H(M)

s mod qy
r
s mod q mod p

)
mod q.
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DSA Signature

Generator

y = gx mod p

6Secret key x Public key y6AUTHENTICATION
INTEGRITY

-Message
M

k ∈ Z∗
q

r = gk mod p mod q
s = H(M)+xr

k mod q

Sign -
M, r , s

-
M, r , s

compare r and

g
H(M)

s y
r
s mod p mod q

Verify
-

ok?

-Message
M�

�
Adversary

q prime
p = aq + 1 prime
g = randoma mod p > 1
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ECDSA

Public parameters: we use a field of cardinality q (either a power of
2, or a large prime), an elliptic curve C defined by two
field elements a and b, a prime number n larger than
2160, and an element G of C of order n. (The elliptic
curve equation over GF(q) is y2 + xy = x3 + ax2 + b in
the characteristic two case and y2 = x3 + ax + b in the
prime field case.) Public parameters are subject to
many security criteria.

Set up: pick an integer d in [1, n − 1], compute Q = dG. Output
(Kp,Ks) = (Q,d).
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ECDSA

Signature generation: pick k in [1, n − 1] at random and compute

(x1, y1) = kG
r = x1 mod n

s =
H(M) + dr

k
mod n

(x1 is a standard way to convert a field element x1 into
an integer.) If r = 0 or s = 0, try again. Output the
signature σ = (r , s)

Verification: check that Q ̸= O, Q ∈ C, and nQ = O. Check that r
and s are in [1, n − 1] and that r = x1 mod n for
(x1, y1) = u1G + u2Q, u1 = H(M)

s mod n, and
u2 = r

s mod n.
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ECDSA Signature

Generator

6Secret key d Public key Q6AUTHENTICATION
INTEGRITY

-Message
Sign - - Ver

-
ok?

-Message
�

�
Adversary

select field, elliptic curve
G point of order n

n prime

Q = d.G

M

k ∈ Z∗
n

r = (k.G)1 mod n
s = H(M)+dr

k mod n

M, r , s M, r , s

compare r and(
H(M)

s G + r
s Q

)
1

mod n

M
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Example of Public Parameters

secp192r1:

q = 6277101735386680763835789423207666416083908700390324961279

a = ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

n = 6277101735386680763835789423176059013767194773182842284081

G = 03 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

seed = 3045ae6f c8422f64 ed579528 d38120ea e12196d5

(the leading “03” is for point compression)
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Example of Keys

d = 651056770906015076056810763456358567190100156695615665659

Q = 02 62b12d60 690cdcf3 30babab6 e69763b4 71f994dd 702d16a5

(the leading “02” is for point compression)
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ECDSA Parameters Generation
1 Choose the finite field Fq .

2 Pseudo-randomly generate a c from seed. Take an elliptic curve
defined by some a and b such that the j-invariant is
j = 6912 4c

4c+27 for q prime (i.e. c = a3/b2) and j = 1
c (i.e. c = b)

otherwise.
3 For q prime, check that 4a3 + 27b2 mod q ̸= 0. For q a power of

two, check that b ̸= 0. If this is not the case, go back to Step 2.
4 Count the number of points on the elliptic curve and isolate a

prime factor n greater than 2160. If this does not work or if
n ≤ 4

√
q, go back to Step 2.

5 Check the MOV and anomalous condition for C. If this does not
hold, go back to Step 2.

6 Pick a random point on the elliptic curve and raise it to the
cofactor of n power in order to get G. If G is the point at infinity,
try again.

Set parameters to (q, representation, a, b,n,G, seed).
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ECDSA Parameters Validation

Parameters: (q, representation,a, b, n,G, seed).
1 Check that q is an odd prime or a power of 2 of appropriate size.

In the latter case, check that the field representation choice is
valid.

2 Check that a, b, xG, yG (where G = (xG, yG)) lie in Fq .
3 Check that seed certifies a and b by generating c again and

checking that a3

b2 = c or b = c depending on the field type.
4 For q prime, check that 4a3 + 27b2 mod q ̸= 0. For q a power of

two, check that b ̸= 0. Check that G lies in the elliptic curve.
Check that n is a prime greater than both 2160 and 4

√
q. Check

that nG = O, the neutral element. Check the MOV and
anomalous condition.
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ECDSA Parameters Selection: Conclusion

making new parameters is not easy
rather use parameters from standards
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Breaking RSA Cryptography by Factoring

Best attack (ideally): factoring

Fact
If we can factor N = pq then from an RSA public key, we can
compute the secret key.

To have RSA cryptography secure, the factoring problem must be
hard
Parameter for the factoring problem: modulus length
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Breaking DH Cryptography by Discrete Logarithm

Best attack (ideally): discrete logarithm computation

Fact
If we can compute the discrete logarithm x of gx then from g, gx , gy

we can compute gxy .

To have DH cryptography secure then the discrete logarithm problem
must be hard for the proposed parameters:

prime order of the generated subgroup
overall structure type:

multiplicative group of a finite field
elliptic curve

random over prime field
random over binary field
special
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Reading the Tables

tables give equivalent security levels over time depending on
applications

symmetric: bitlength of the key for symmetric encryption or MAC
also: half of the hash length for hashing
asymmetric: bitlength of the RSA modulus or of p for Z∗p
(sub)groups
subgroup DL: bitlength of the order of the generator g
(in multiplicative groups and elliptic curves as well)
EC: bitlength of the field cardinality on which the random elliptic
curve is considered
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Meta-comparison of Cryptographic Strengths
Following http://www.keylength.com by Quisquater

method year sym. asym. DL EC hash
Lenstra-Verheul 2015 82 1613 145 1613 154 163
Lenstra updated 2015 78 1245 156 1245 156 156
ECRYPT II 2011–15 80 1248 160 1248 160 160
NIST 2011–30 112 2048 224 2048 224 224
FNISA 2010–20 100 2048 200 2048 200 200
BSI 2011–15 – 1976 224 2048 224 224
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PKC

Definition
A public-key cryptosystem is a tuple (Gen,M,Enc,Dec) with a
plaintext domainM and three efficient algorithms Gen, Enc, and
Dec. The algorithm Dec is deterministic and outputs either something
inM or an error ⊥. It is such that

∀X ∈M Pr[Dec(Ks,Enc(Kp,X )) = X ] = 1

where (Kp,Ks) is generated from running Gen. The probability is over
the randomness used in Gen and Enc.
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How to Define Security?

the adversary holds the public key so he can encrypt whatever
he wants without using any external oracle
so, for predictible plaintext, if encryption is deterministic, it is easy
to recognize form the ciphertext
example: the encryption of a salary, the encryption of “yes” or
“no”
we should add randomness in the encryption and make the
encryption of arbitrary messages hard to distinguish

SV 2016–17 Public-Key Cryptography CryptoSec 867 / 1037



Security against Distinguisher

Definition
A PKC (Gen,M,Enc,Dec) is (t , ε)-secure under chosen plaintext
attacks (IND-CPA-secure) if for any interactive process A limited to a
time complexity t , given a bit b, when we first run the following steps

1: Gen→ (Kp,Ks)
2: A(Kp)→ (m0,m1) such that |m0| = |m1|
3: Enc(mb)→ c
4: A(Kp, c)→ x

we have
Pr[x = 1|b = 0]− Pr[x = 1|b = 1] ≤ ε

It is (q, t , ε)-secure under chosen plaintext/ciphertext attacks
(IND-CCA-secure) if the same holds for any similar interactive
process ADec(Ks,.) who is limited to q queries to a decryption oracle
Dec(Ks, .) but not allowed to send it c.
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Problem with Deterministic Cryptosystems

this is a modern notion of security
problem: if Enc is deterministic, then PKC is insecure!
modern PKC are probabilistic
example: ElGamal cryptosystem (and variants)
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ElGamal Cryptosystem Generalized (Reminder)

Alice Bob
input: m secret key: x

public key: y = gx

y←−−−−−−−−−−−−

pick r at random
u = gr u−−−−−−−−−−−−→
K = y r K = ux

v = mK v−−−−−−−−−−−−→ m = vK−1

output: m
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Signature Scheme

Definition
A digital signature scheme is a tuple (Gen,D,Sig,Ver) with a
message domain D ⊆ {0,1}∗ and three efficient algorithms Gen, Sig,
and Ver. The algorithm Ver is deterministic and outputs 0 (reject) or 1
(accept). It is such that

∀X ∈ D Pr[Ver(Kp,Sig(Ks,X )) = 1] = 1

where (Kp,Ks) is generated from running Gen. The probability is over
the randomness used in Gen and Sig.
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EF-CMA Security

Definition
A digital signature scheme (Gen,D,Sig,Ver) is (q, t , ε)-secure
against existential forgery under chosen message attacks
(EF-CMA) if for any probabilistic algorithm A limited to a time
complexity t and to q queries,

Pr[ASig(Ks,.) forges] ≤ ε

where (Kp,Ks) is the output of Gen, (X , c) a pair of random variables
defined as the output of ASig(Ks,.), and “ASig(Ks,.) forges” is the event
that Ver(Kp,X ) = 1 and that A did not query X to the signing oracle.
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Other Public-Key Cryptosystems

RSA
Rabin
ECC
HECC
Paillier cryptosystem
NTRU
lattice-based cryptosystem
McEliece cryptosystem
TCHo
...
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Some Alternate Constructions Based on Lattices
or Codes

NTRU
lattice-based crypto
McEliece cryptosystem
TCHo

why this?
resilience to quantum computing
it finds other applications:

fully homomorphic encryption (clouds..., privacy-by-design...)
multilinear mapping (multiparty cryptography...)
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An Example: NTRUEncryption

N prime, q > p, p and q coprime
f ,g polynomials with degree at most N − 1 and coefficients in
{−1, 0, 1}
f must be such that there exists fp and fq such that f × fp = 1 in
Zp[x ]/(xN − 1) and f × fq = 1 in Zq[x ]/(xN − 1)
secret key: (f , fp)
public key: h such that h = pfqg in Zq[x ]/(xN − 1)
message: a polynomial m with degree at most N − 1 and
coefficients in {−1, 0, 1}
encryption: pick a random polynomial r with degree at most
N − 1 and small coefficients, then e = rh + m in Zq[x ]/(xN − 1)
decryption: a = fe in Zq[x ]/(xN − 1)
note that a = prg + fm
by having rg small, we have a mod q mod p = fm mod p, so we
compute b = fm in Zp[x ]/(xN − 1)
then c = fpb = m in Zp[x ]/(xN − 1)
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The Regev Public-Key Cryptosystem

Generator

6Secret key s⃗Public key A, b⃗ 6 AUTHENTICATION
INTEGRITY

-Message
x ∈ {0, 1}

pick v⃗ ∈ {0, 1}m

c1 = v⃗ t A mod p
c2 = x

⌊ p
2

⌋
+ v⃗ t b⃗ mod p

Encrypt -Ciphertext
(c1, c2)

-
(c1, c2)

d = c2 − c1s⃗ mod p
x′ s.t. d − x ′ ⌊ p

2

⌋
small

Decrypt -Message

x ′

�
�

Adversary

s⃗ ∈ Zn
p

A ∈ Zm×n
p

ei ← χ i = 1, . . . , n
b = A⃗s + e⃗ mod p

6
?

p prime, ε > 0
n2 ≤ p ≤ 2n2, m = (1 + ε)(n + 1) log2 p
α = 1√

n log2
2 n

χ: Ei ∼ N (0, αp), ei = ⌊Ei⌉
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Lattice-Based Cryptography

lattice: discrete subgroup of Rm

specified by a basis:

L(a⃗1, . . . , a⃗n) =

{
n∑

i=1

si a⃗i ; s1, . . . , sn ∈ Z

}

it is hard to find short vectors x⃗ ∈ L(a⃗1, . . . , a⃗n)

given b⃗, it is hard to find x⃗ ∈ L(a⃗1, . . . , a⃗n) making ∥b⃗ − x⃗∥ small
many cryptographic algorithms
fully homomorphic encryption
problem: public keys are a bit large
likely to be used in practice in near future
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Key and Data Encapsulation Mechanisms
Hybrid Encryption

DEM: same as symmetric encryption
KEM: public-key algorithm producing an encrypted
(encapsulated) key
≈ generate a random symmetric key and encrypt it using
public-key encryption
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KEM Primitive

functionality
if KemEncKp → (K ,C)

then KemDecKs (C) = K

security
key is confidential

Generator, KemEnc, KemDec
components

KEM
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KEM

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

� Key
K

KemEnc -
C

-
C

KemDec -Key
K

�
�

Adversary
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KEM + DEM

Generator

KemDecKemEnc

6 6KK

- -�
�

6 AUTHENTICATION
INTEGRITY

6Public Key Secret Key

-Message
DemEnc -

C

-

C

DemDec
-

ok?

-Message
�

�
Adversary
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Commitment Scheme

functionality
Commit(X ; r)→ c

security
hiding, binding

Setup, Commit
components

commitment
scheme

to commit to X : pick r at random and release Commit(X ; r)
to open c: release r to check Commit(X ; r) = c
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Pedersen Commitment

setup generates two large primes p and q s.t. q|(p − 1) (e.g.
1024 resp. 160 bit-long), an element g ∈ Z∗p of order q,
a ∈ Z∗q , and h = ga mod p
Domain parameters: ⟨p, q, g,h⟩

commit Commit(X ; r) = gX hr mod p
unconditionally hiding given c in the subgroup spanned by g, any

X has a related r such that Commit(X ; r) = c
computationally binding commiting to X and opening to X ′ ̸= X

leads to solving gX hr ≡ gX ′
hr ′ (mod p) hence

a = X ′−X
r−r ′ mod q

This is equivalent to solving the discrete logarithm
problem with the domain parameters
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Conclusion

two families: RSA (factoring-based) and DH (discrete log-based)
does not replace symmetric cryptography: used for key
exchange only
more compact data using elliptic curves
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Systematic Classification of Cryptography

Feistel SPN Lai-Massey sync. selfsync. numbers other numbers GF EC

block cipher stream cipher RSA Diffie-Hellman post-quantum

symmetric asymmetric

encryption

	 ? R � U � U 	 ? R

� j � U j

) q
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Must be Known

the big picture with the 4 primitives
Diffie-Hellman key agreement protocol
ElGamal cryptosystem
RSA
PKCS#1
Rabin cryptosystem
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Train Yourself

RSA encryption: midterm exam 2008–09 ex2
RSA signature: final exam 2010–11 ex2
PKC construction: final exam 2009–10 ex3
signature construction: final exam 2008–09 ex2
trapdoor in DSA: final exam 2014–15 ex1
DSA with related randomness: final exam 2014–15 ex2
bad DL-based signature: final exam 2015–16 ex1
Pedersen commitment: final exam 2012–13 ex5
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Roadmap

secure communication channels
setup by password
setup by short authenticated strings
setup by a trusted third party: Kerberos, PKI
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9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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The Cryptographic Trilogy

Message
X

- -
X

�
�

Adversary

Confidentiality (C): only the legitimate receiver can get X
Authentication + Integrity (A+I): only the legitimate sender can
insert X and the received message must be equal to X
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Enforcing Confidentiality by Encryption

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Encrypt - - Decrypt -Message�

�
Adversary
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Enforcing Integrity by Hash Function

-Message

Hash

?

-
INTEGRITY

Digest

-

Hash

?

Message

?
Compare -

ok?

�
�

Adversary
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Enforcing Authenticity + Integrity by MAC

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
X

MAC -
X , c

-
X , c

Check
-

ok?

-Message
X�

�
Adversary
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Authentication and Integrity

Message integrity: we make sure that the received message is
equal to the sent one
Message authentication: we make sure about who sent the
message
good authentication means often enforce integrity
at the same time
symmetric encryption is sometimes used for message
authentication but this is a BAD practice
but there are weird authentication means not protecting it
example: problem in GSM/WEP/Bluetooth/... (see slide 670)
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A+I+C by Symmetric Cryptography

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message

-
nonce

nonce
6

Enc/MAC - - Dec/Check
-

ok?

-Message
�

�
Adversary
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A+I+C Symmetric Constructions

encrypt-then-MAC
MAC-then-encrypt
authenticated modes of operation

CCM CS CWC EAX GCM IACBC IAPM OCB PCFB XCBC ...
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Encrypt-then-MAC

Message

?
Enc

?

?
Cipher Key

- MAC

?

?

Extra

?
MAC Key

6�
�

Adversary

- MAC- =

6

?
Extra

?
MAC Key

Dec

6

6
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?
Cipher Key
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MAC-then-Encrypt

Message

- MAC

?

?

Extra

?
MAC Key

?
Enc

6�
�

Adversary-Cipher Key Dec
6

Message

� Cipher Key

- MAC - =

6

?

Extra

?
MAC Key

SV 2016–17 Trust Establishment CryptoSec 908 / 1037



Some Tricky Additional Things

as soon as padding occurs, some combination may be weak
some problems when adversary can get advantage of a return
channel
many standards weak, fixed by implementations
example (2003): MAC-then-Pad-then-Encrypt in TLS using block
ciphers is weak
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TLS using Block Ciphers

Text - MAC -
PAD

- CBC - DEC - - VER - Text

�bad record mac

�decryption failed

S E C R E T A

C C E S S

block 1

block 28 # $

* = k % ! block 32 2 2
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Padding Oracle Attack: Encryption

Client Adversary

P A S S W O R D

x & @ 3 P $ + c

7 7 7 7 7 7 7 7

9 w @ G = u P +

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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-

-

-

Enc -

?
Enc -⊕-

?
Enc -⊕-

We would like to decrypt 9w@G=uP+
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Padding Oracle Attack: Decryption

Adversary Server

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

9 w @ G = u P +

P A S S W O R D

6?

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

-

-

-

Dec -

?
Dec -⊕-

?
Dec -⊕-

f 4 = S . o w t

) g $ K 9 s X d

decryption failed

t⊕D=d
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Security Property of Communication Channels

Message
X

- -
X

�
�

Adversary

Confidentiality, Authentication, Integrity
Freshness: the received X was not received before
(a message in transit cannot be replayed)
Liveliness: a sent message X is eventually delivered
(a message in transit cannot be discarded)
Timeliness: (> liveliness) time of delivery is upper bounded
(a message cannot be overly delayed)
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From Packet Security to Session Security

-
�

-

-
�

-

�
�

Adversary

Key establishment: set up A/I/C key material for message
security
Session integrity: the sequence of protocol messages is
eventually the same at both ends
(messages in transit cannot be swapped)
Privacy: many different notions at this time!
(cannot identify sender or receiver)
(cannot link that two messages by same sender)
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Enforcing Session Integrity

Assuming that channels enforce A+I+C and that key establishment is
secure, session integrity splits in two problems

Sequentiality: whenever a participant has seen a message
sequence starting with X1, . . . ,Xt , Xt coming in, then the other
participant has seen a message sequence whose first t
messages are X1, . . . ,Xt,: easy to protect: just number the messages and apply A+I
protection on message numbers
Termination fairness: making sure that the last message on
both ends is the same one/: no cheap way to enforce it if liveliness is not guaranteed
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Sequentiality using A + I Message Security

common methods:
acknowledge receipt of every message
authenticate a sequence number in packets and check that
received packets have consecutive sequence numbers
authenticate an increasing nonce value (e.g. a clock value) +
check for no packet loss by other means

TLS or SSH: Y = Enc(X∥MAC(seq∥X )) where seq is implicit
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Fair Termination Problems

example: contract signing
Alice and Bob have signed a contract and want to be sure that
they both consider the contract as valid
there must be one critical message in the protocol such that
one participant thinks his counterpart has a valid contract
the other does not think the transaction is valid
this reduces to synchronizing on an exit status bit
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Fair Termination by Synchronization Protocol

Alice Bob

-
�

-
�

-
�

a← exit status b ← exit status

synchronization
protocol

output: a′ output: b′

exit status: 1 (normal termination case) or 0 (failure case)
functionality: a′ = b′ = a× b
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Keep-in-Touch (KiT) Synchronization Protocol

Alice Bob
input: a input: b

if a = 0, output 0

pick N
[N]−−−−−−−−−−−−−−−−−−−→ if b = 0, output 0
(0)←−−−−−−−−−−−−−−−−−−−
(1)−−−−−−−−−−−−−−−−−−−→
(2)←−−−−−−−−−−−−−−−−−−−
...

(N)−−−−−−−−−−−−−−−−−−−→
wait

output: 1 output: 1

(in the case of timeout: output 0)
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KiT Protocol Security

Theorem (Avoine-Vaudenay 2006)

Communication complexity: at most E(C) = 2 +
∑

i i Pr[N = i]
Probability of asymmetric termination: at most

pa = maxi Pr[N = i]

For any synchronization protocol with parameters C and pa, there
exists a KiT protocol with parameters C′ and p′a, such that
Pr[C′ ≤ C] = 1 and p′a ≤ pa.

Example: Pr[N = i] = 1
N so pa = 1

N and E(C) = N+3
2
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Bad News

Theorem (Avoine-Vaudenay 2006)

For any synchronization protocol with parameters C and pa we have

E(C)− 2 ≥ 1
2

(
1
pa
− 1
)

example: if we want pa ≤ 2−20 we need E(C) ≥ 219

morality: synchronization must be expensive
morality: it is hard to beat the KiT protocol set up with N uniform

SV 2016–17 Trust Establishment CryptoSec 921 / 1037



Summary for Secure Channel (so far)

level property toolkit
packet A+I MAC

confidentiality symmetric encryption
A+I+C integrated modes
freshness (comes with sequentiality)
liveliness (must live without)

session key establishment setup protocols (next)
sequentiality various protocol options
termination synchronization protocol

all privacy ?
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9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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Problem

Q: How to setup a secure channel over an insecure

channel?

A: hfr n frpher punaary
ROT13
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Virtual Channels by Combination of Channels

66

-� [assumptions]

-Message
X

-
Y

-
Y

-
X

Message�
�

Adversary
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Secure Channel from A+I+C Channel

Generator

KeyKey 66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Next Step: Strongly Secure Channel From Weakly
Secure Channel

Q: How to relax security properties at setup?

A: hfr choyvp-xrl pelcgbtencul
ROT13
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... with A+I Channel: Key Agreement Protocol

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Security of Key Exchange Protocols

Secrecy: by looking at the communication protocol, it is
impossible to guess the exchanged key
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The Diffie-Hellman Key Agreement Protocol

Assume a group ⟨g⟩ generated by some g of prime order q

Alice Bob

pick x ∈ Z∗q , X ← gx X−−−−−−−−−−−−→ if X ̸∈ ⟨g⟩ − {1}, abort

if Y ̸∈ ⟨g⟩ − {1}, abort Y←−−−−−−−−−−−− pick y ∈ Z∗q , Y ← gy

K ← KDF(Y x) K ← KDF(X y )
(K = KDF(gxy ))
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Key Transfer by Public-Key Encryption

Alice Bob

Kp←−−−−−−−−−−−− (Kp,Ks)← Gen
pick K

Y ← EncKp(K )
Y−−−−−−−−−−−−→ K ← DecKs(Y )
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Passive vs Active Adversaries

active adversary: can interfere with communication (modify
messages, insert messages, replay messages)
The Diffie-Hellman protocol requires A+I channel to protect
against it
example: static keys authenticated by ad hoc means
passive adversary: just listen to communications and tries to
decrypt communications (e.g. by recovering the key)
The Diffie-Hellman protocol resists to passive adversaries with
no extra assumptions
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An Active Attack: Man-in-the-Middle Attack

Alice Eve Bob

X−−−−−−→ X ′

−−−−−−→
Y ′

←−−−−−− Y←−−−−−−
(K1) (K2)
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Approaches to Build an Initial Authenticated
Channel

using really secure initial channel
setup cable, Near Field Comm. (see Bluetooth simple pairing)
by user monitoring
caution: humans are not so reliable for security (e.g. Bluetooth)
relies on strong assumptions (genuine software, correct public
keys...)
→ password-based, SAS-based
using a trusted third party
examples: secure token, key server, certificate authority
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Summary

we need specific means to A+I-securely transmit a public key
we agree on a master key using public key cryptography
we use conventional cryptography to set up secure channels

we derive several symmetric keys using key derivation functions
we use symmetric encryption and MAC

we must live with the fear that termination may be unfair
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9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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Secure Communication Step 1
Conventional Cryptography

Generator

66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

KeyKey

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication Step 2
Public-Key Cryptography

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication Step 3
Password-Based Cryptography

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY

(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication Step 4
Cryptography Based on Short Authenticated Strings

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Secure Communication Steps 1–4

with confidential channel without confidential channel

Generator

66 CONFIDENTIAL
AUTHENTICATION

INTEGRITY

KeyKey

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

ProtoBobProtoAlice

6KeyKey 6

-� AUTHENTICATION
INTEGRITY

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

Generator

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6CONFIDENTIAL
AUTHENTICATION

INTEGRITY

(narrowband channel)

Password Password

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary

ProtoBobProtoAlice

6 6KeyKey

-� � -�
�

6 6AUTHENTICATION
INTEGRITY

(narrowband channel)

SAS SAS

-Message
Enc/MAC - - Dec/Check

-
ok?

-Message
�

�
Adversary
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Adversary Capabilities on the Secure Channel

Regular channels: the adverary can do whatever he/she wants with
the messages: modify, create, swap, remove, stall, ...

(Weak) authenticated channels: the adversary cannot modify nor
create messages. He/she can swap, remove, stall, ...

(Strong) authenticated channels: same plus some additional
assumptions!
E.g. messages must be either deliver at once or
removed (stall-free channels).
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9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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Several Trusted 3rd Party Approach

soft 3rd party: user monitoring
password-based, SAS-based
pervasive 3rd party: secure token
smart cards, secureID, trusted computing platform
key server: Kerberos
symmetric cryptography only, for corporate network
certificate authority: PKI
for global network
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Example: Kerberos

Client

KClient,Ksession

Server

KServer,Ksession

Authority

KClient,KServer

request

�

timed ticket+Ksession

�
ticket -

timed ticket+Ksession encrypted with KClient

ticket encrypted with KServer
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Kerberos

Hypotheses:
there is an online (trusted) authentication server (AS)
AS shares KC with client IC
AS shared KS with server IS

Goal: to help IC and IS to share a session key K (and to help
careless users to get privacy)
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Server-Aided Authentication (Bad Protocol)

AS Client Server

request IC to IS←−−−−−−−−−−−−−−

pick K
CKC

(K ),CKS
(K )

−−−−−−−−−−−−−−→
CKS

(K ),IC−−−−−−−−−−−−−−→

Problem: there is no authentication: an attacker can replace IC or IS
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Attack

AS Adv. Server

request IA to IS←−−−−−−−−−−−−−−

pick K
CKA (K ),CKS

(K )
−−−−−−−−−−−−−−→

CKS
(K ),IC−−−−−−−−−−−−−−→

Server thinks he is talking to IC !
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Attack

AS (Adv.) Client Adv.
↓

request IC to IA←−−−−−−−−−−−−−−

pick K
CKC

(K ),CKA (K )
−−−−−−−−−−−−−−→

CKA (K ),IC−−−−−−−−−−−−−−→

Client thinks he is talking to IS!
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Needham-Schroeder Authentication (Still Bad)

AS Client Server

request IC to IS ,N1←−−−−−−−−−−−−−− pick N1

pick K
CKC

(K ,IS ,N1,CKS
(K ,IC))−−−−−−−−−−−−−−→

CKS
(K ,IC)−−−−−−−−−−−−−−→

CK (N2)←−−−−−−−−−−−−−− pick N2
CK (N2+1)−−−−−−−−−−−−−−→

Problem: replay attack by impersonating C after K gets compromised

SV 2016–17 Trust Establishment CryptoSec 950 / 1037



Basic Kerberos Protocol

AS Client Server

request IC to IS ,N←−−−−−−−−−−−−−−−−−−− pick N

pick K
CKC

(K ,IS ,N,T ,L),CKS
(K ,IC ,T ,L)

−−−−−−−−−−−−−−−−−−−→
CKS

(K ,IC ,T ,L),CK (IC ,T )
−−−−−−−−−−−−−−→

CK (T+1)←−−−−−−−−−−−−−−

T : clock value; L: validity period
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The Certificate Authority Model

Client Server-� insecure -�

?

�Authority
K CA

p Kp

AUTHENTICATION AUTHENTICATION

?

certificate
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Critical Secure Channels

Authority

+
K CA

p

Client 3

� K CA
p

Client 2

k
K CA

p

Client 1

k

K 3
p

Server 3

� K 2
p

Server 2

+

K 1
p

Server 1
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Public-Key Certificate

Generator

6 CA Public KeyCA Secret Key 6AUTHENTICATION
INTEGRITY

-Public Key
Sign -Certificate -Certificate Verify

-
ok?

-Public Key
�

�
Adversary
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Semi-A Key Exchange Using Certificates

Client Server

Authority

K CA
p

�

Kp

K

certificate

Urequest, . . . -
�

-
EncKp (K )

K ,Kp K
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Semi-Authentication: Key Transmission using
PKC

Generator

6Secret KeyPublic Key 6 AUTHENTICATION
INTEGRITY

-Key
Encrypt - - Decrypt -Key�

�
Adversary
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Semi-Authenticated Channel

one participant authenticates the other
(typical for client-server communication)

client receives the authenticated (static) key of the server
client and server run a key establishment protocol
secure A+I+C channel is set up

client knows he is talking to the correct server
server has no clue to which client he is talking to
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A Typical TLS Session

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:cipher suite, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−− select cipher suite

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

(key derivation)

MACC−−−−−−−−−−−−−−−−−−−−−−−−−−→ check

check
MACS←−−−−−−−−−−−−−−−−−−−−−−−−−−

(open tunnel)

[authentication?]←−−−−−−−−−−−−−−−−−−−−−−−−−−
[login, password]−−−−−−−−−−−−−−−−−−−−−−−−−−→ check
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An X.509 Certificate Example: Overall Structure

Certificate:

Data:

Version: 3 (0x2)

Serial Number: 674866 (0xa4c32)

Signature Algorithm: md5WithRSAEncryption

Issuer: C=ZA, ST=Western Cape, L=Cape Town,

O=Thawte Consulting cc, OU=Certification Services Division,

CN=Thawte Server CA/Email=server-certs@thawte.com

Validity

Not Before: Jun 2 13:10:11 2003 GMT

Not After : Jun 11 10:21:15 2005 GMT

...

X509v3 extensions:

X509v3 Extended Key Usage: TLS Web Server Authentication

X509v3 Basic Constraints: critical CA:FALSE

Signature Algorithm: md5WithRSAEncryption

8d:7b:78:60:88:c4:13:4e:94:0d:bc:3b:1b:1c:b6:c9:bc:b1:

0b:ed:7d:eb:6f:08:3a:ba:6d:21:36:93:38:36:66:7b:a7:bc:

c0:3f:c4:e0:cf:b4:02:58:be:a6:b9:1d:45:a2:c4:58:38:07:

e4:63:1a:d9:b9:8d:27:7c:93:67:31:82:6f:a3:3c:86:0c:e0:

10:71:de:f2:e9:74:af:ac:76:b4:5b:8e:48:57:9d:8f:12:f6:

72:63:8a:79:b4:74:e0:ba:ca:ac:1a:36:b4:16:38:c1:c5:d2:

73:ed:e8:64:b0:ae:9e:e2:36:d7:0c:77:92:cc:c7:c0:e0:8a:

54:24
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An X.509 Certificate Example: Subject

Subject: C=CH, ST=Bern, L=Bern,

O=Switch - Teleinformatikdienste fuer Lehre und Forschung,

CN=nic.switch.ch

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:d0:0e:b7:16:bf:86:59:c3:97:e6:02:33:59:90:

65:29:b0:69:73:64:83:03:1b:df:62:a8:4d:c0:4f:

3c:d9:12:6b:8c:57:95:e1:57:e8:48:a6:7f:dd:15:

8b:9d:ad:93:dc:78:af:06:1a:ce:0f:7b:cc:c4:6f:

a0:06:26:40:73:04:d3:da:7b:20:c1:15:37:8c:2f:

58:c4:d4:c1:4b:18:84:5c:54:f1:b1:a0:44:3c:e2:

0e:8a:a2:63:48:6b:34:c7:10:9d:a1:23:56:77:f5:

4e:3d:38:9a:70:5e:03:02:30:45:ee:81:e4:94:96:

47:18:9e:47:37:bb:18:f6:87

Exponent: 65537 (0x10001)
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Two Approaches to Revocations

certificate revocation lists (CRL):
regularly, or under emergency cases, revocation lists are
released by CA
clients should always check for new CRLs (at the nearest
repository) and go through the list before treating any certificate
drawback: high bandwidth
online certificate status protocol (OCSP):
clients should send certificates to the CA for approval
drawback: subject to DoS attacks
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Several 3rd-Party Based Trust Infrastructure

Kerberos
symmetric-crypto with key escrow
PKI
advantage: widely available
identity-based cryptography: have public keys implicit from
identities and time
advantage: time-based revocation with small period
certificateless encryption: combine the two models
advantage: requires no key escrow
certificate-based encryption: certificate is private, required for
decryption
≈ equivalent to certificaless encryption (name is confusing)
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Public-Key Infrastructure

Sender Receiver
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Public Key
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Identity-Based Encryption

Sender Receiver

Authority

6

Identity+Time

Extract

Setup

?
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Master Key
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Certificateless Encryption

Sender Receiver
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Generator
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Secret key 2

��
�

Adversary
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Boneh-Franklin Identity-Based Encryption

Sender Receiver

Authority

6

ID

Extract
QID = H1(ID)
dID = sQID

Setup
pick s ∈ Z∗

q
Kpub = sP

construct q, P, e : q prime, P generator, e pairing
construct H1, H2

?

6

ID

Master Key s

6

�

AUTHENTICATION+INTEGRITY
Parameters q,P, e,H1,H2,Kpub

Secret Key dID

-Message m
Encrypt

QID = H1(ID)
pick r ∈ Z∗

q
u = rP
v = m ⊕ H2(e(QID, Kpub)

r )

-(u, v) -(u, v)

m = v ⊕ H2(e(dID, u))

Decrypt -Message m�
�

Adversary
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Some Popular Trust Model

TLS: trust model based on a PKI
clients hold a list of CA public keys and retrieve server certificates
SSH: trust model based on cache
clients keep in cache the public key of servers
(first connection may be insecure)
PGP: trust model monitored by users
users set up their confidence level in obtained public keys
a “web of trust” can be used to check a public key
(to check who has put a higher confidence level to this key)
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9 Trust Establishment
From Secure Channel to Secure Communications
Setup of Secure Channels
Setup by Narrowband Secure Channel
Setup by a Trusted Third Party
Trust Management and Cryptography
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Metacryptography
Can we Trust Crypto?

2nd law of thermodynamics:
no matter the real strength of crypto designs, security decreases
with time (Moore’s law or cryptanalysis)
wrong hypotheses:
e.g. we might figure out that factoring is easy
−→ need for crypto-diversity
academic system failure:
crypto results are done under pressure: too many conferences,
too many papers, too many beans to get
−→ many results are wrong
−→ need for automatic proof verification
threat model definition issues:
some models are complicated and later happen to be irrelevant
security does not add: secure + secure may be insecure
−→ need for good composability models
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Chain of Trust in the PKI Model

authority software manufacturer retailer environment human

CA must issue correct certificate
sofware must include correct CA public keys
harware must execute what it is supposed to
retailer must not add malicious software
environment must not bypass secure software
human user must care invalid certificates
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Chain of Trust in Real Life

software companies add CA’s on commercial basis
some CA’s are corruptable
worms may corrupt CA lists
users pay no attention to browser warnings

consequence: phishing attacks

further thoughts: this is no longer a cryptographic issue
−→ education, psychology, ergonomy, technology
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Several Approaches to Certificate Verification

TLS: verify a certificate every time the public key is used
SSH: verify that a public key has not changed since the last time
PGP: use a public key ring set up by the user (manual
verification based on reputation)
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Conclusion

secure communication is essentially solved as long as birth
and death are secure

birth: need for means to authenticate public keys
death: no solution, just behave as if we would never die

crypto offers many different models
PKI, password-based, ID-based, certificateless, SAS-based

correct solution must be determined on a case-by-case basis
trust establishment is not a pure-crypto issue

need to address the human factor
need to deal with trust management:

logistic, software engineering network security
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Must be Known

secure channels
Kerberos
public-key cryptography and man-in-the-middle attacks
PKI, certificate validation model
password-based cryptography
SAS-based cryptography
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Train Yourself

secure channel:
final exam 2012–13 ex3
final exam 2009–10 ex2
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10 Case Studies II
TLS: Transport Layer Security
The Biometric Passport
NFC Creditcard Payment
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Example of Critical Application

[E-banking from a browser]
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Requirements

strong bidirectional authentication
confidentiality of communication
integrity of communication
non-repudiation of transaction
resilience to clients in hostile environment
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History

SSLv1 by Netscape in 1994
Microsoft version PCT in 1995
SSLv3 by Netscape in 1995
TLS/1.0 in 1999 [RFC2246]
TLS/1.1 in 2006 [RFC4346]
TLS/1.2 in 2008 [RFC5246]
TLS/1.3: still draft

Goal: secure any communication (e.g. HTTP) based on TCP/IP
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TLS Record Protocols

Record Protocol is based on TCP

Here are the four protocols based on the Record Protocol:
Handshake Protocol (for initiating a session)
Change Cipher Spec Protocol (for setting up cryptographic
algorithms)
Alert Protocol (for managing warnings and fatal errors)
Application Data Protocol
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Session State

Session identifier
Peer certificate (if any)
Cipher suite choice

Algorithm for authentication and key exchange during handshake
Cipher Spec: symmetric algorithms (encryption and MAC)

Master secret (a 48-byte symmetric key)
nonces (from the client and the server)
sequence numbers (one for each communication direction)
compression algorithm (if any)
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Original TLS 1.0 Cipher Suites — i

CipherSuite Key Exchange Cipher Hash
TLS NULL WITH NULL NULL NULL NULL NULL
TLS RSA WITH NULL MD5 RSA NULL MD5
TLS RSA WITH NULL SHA RSA NULL SHA-1
TLS RSA EXPORT WITH RC4 40 MD5 RSA RC4 40 MD5
TLS RSA WITH RC4 128 MD5 RSA RC4 128 MD5
TLS RSA WITH RC4 128 SHA RSA RC4 128 SHA-1
TLS RSA EXPORT WITH RC2 CBC 40 MD5 RSA RC2 40 MD5
TLS RSA WITH IDEA CBC SHA RSA IDEA SHA-1
TLS RSA EXPORT WITH DES40 CBC SHA RSA DES40 SHA-1
TLS RSA WITH DES CBC SHA RSA DES SHA-1
TLS RSA WITH 3DES EDE CBC SHA RSA 3DES EDE SHA-1
TLS DH DSS EXPORT WITH DES40 CBC SHA DH DSS DES40 SHA-1
TLS DH DSS WITH DES CBC SHA DH DSS DES SHA-1
TLS DH DSS WITH 3DES EDE CBC SHA DH DSS 3DES EDE SHA-1
TLS DH RSA EXPORT WITH DES40 CBC SHA DH RSA DES40 SHA-1
TLS DH RSA WITH DES CBC SHA DH RSA DES SHA-1
TLS DH RSA WITH 3DES EDE CBC SHA DH RSA 3DES EDE SHA-1
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Original TLS 1.0 Cipher Suites — ii

CipherSuite Key Exchange Cipher Hash
TLS DHE DSS EXPORT WITH DES40 CBC SHA DHE DSS DES40 SHA-1
TLS DHE DSS WITH DES CBC SHA DHE DSS DES SHA-1
TLS DHE DSS WITH 3DES EDE CBC SHA DHE DSS 3DES EDE SHA-1
TLS DHE RSA EXPORT WITH DES40 CBC SHA DHE RSA DES40 SHA-1
TLS DHE RSA WITH DES CBC SHA DHE RSA DES SHA-1
TLS DHE RSA WITH 3DES EDE CBC SHA DHE RSA 3DES EDE SHA-1
TLS DH anon EXPORT WITH RC4 40 MD5 DH anon RC4 40 MD5
TLS DH anon WITH RC4 128 MD5 DH anon RC4 128 MD5
TLS DH anon EXPORT WITH DES40 CBC SHA DH anon DES40 SHA-1
TLS DH anon WITH DES CBC SHA DH anon DES SHA-1
TLS DH anon WITH 3DES EDE CBC SHA DH anon 3DES EDE SHA-1

many more in 1.2:
cipher: AES GCM, AES CCM, CAMELLIA, ARIA
hash: SHA2
“key exchange”: ECDSA, PSK
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A Typical TLS 1.0 Session

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:cipher suite, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−− select cipher suite

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

(key derivation)

MACC−−−−−−−−−−−−−−−−−−−−−−−−−−→ check

check
MACS←−−−−−−−−−−−−−−−−−−−−−−−−−−

(open tunnel)

[authentication?]←−−−−−−−−−−−−−−−−−−−−−−−−−−
[login, password]−−−−−−−−−−−−−−−−−−−−−−−−−−→ check
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RSA Key Exchange

Client Server

ClientHello:accepted cipher suites, nonceC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
ServerHello:TLS RSA cipher hash, certificate, nonceS←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pre master secret
ClientKeyExchange:ENC(pre master secret)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ decrypt

RSA encryption is PKCS#1v1.5
the RSA public key must be authenticated
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Key Derivation

nonceC (32B)
nonceS (32B)

pre master secret

??

- PRF - master secret
(48B)

??

- PRF

-
-
-
-
-
-

Aut. C → S
Aut. S → C
Enc. C → S
Enc. S → C
IV C → S
IV S → C

pre master secret is 48B for RSA key exchange or the obtained
Diffie-Hellman key for DH RSA, DH DSS, DHE RSA, DHE DSS, and
DH anon
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Application Data Record Protocol

split the application data into fragments of at most 214 Bytes and
send the fragments separately.
(optional) compress the fragment
append a MAC to the fragment
The MAC is computed on a sequence number, the compression
and TLS version materials, the compressed fragment.
encrypt all this
send this after a record header (type, version, length)
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Secure Channel in TLS (Using CBC Encryption)

fragment

-MAC

?

?

seq num

?MAC key

?
Enc

6�
�

Adversary
-
-

IV
Enc key Dec

6

fragment

�
�

IV
Enc key

-MAC- =
6

?

seq num

? MAC key
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TLS 1.3

cipher suite in the form

TLS KEA AUTH WITH CIPHER HASH

key exchange (KEA) and authentication (AUTH) are separated
things
KEA is (EC)DHE
AUTH is the way to authenticate peers, it can be with a certificate
(RSA or ECDSA) or PSK
PSK:
just makes pre master secret be the result of (EC)DH
concatenated with a pre-shared key
CIPHER: AES-GCM, AES-CCM, CHACHA20-POLY1305
hash: SHA2
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TLS 1.3 Cipher Suites
TLS DHE RSA WITH AES 128 GCM SHA256
TLS DHE RSA WITH AES 256 GCM SHA384
TLS ECDHE ECDSA WITH AES 128 GCM SHA256 (mandatory)
TLS ECDHE ECDSA WITH AES 256 GCM SHA384 (recommended)
TLS ECDHE RSA WITH AES 128 GCM SHA256 (mandatory)
TLS ECDHE RSA WITH AES 256 GCM SHA384 (recommended)
TLS DHE RSA WITH AES 128 CCM
TLS DHE RSA WITH AES 256 CCM
TLS DHE RSA WITH AES 128 CCM 8
TLS DHE RSA WITH AES 256 CCM 8
TLS ECDHE RSA WITH CHACHA20 POLY1305 SHA256 (recommended)
TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA256 (recommended)
TLS DHE RSA WITH CHACHA20 POLY1305 SHA256
TLS DHE PSK WITH AES 128 GCM SHA256
TLS DHE PSK WITH AES 256 GCM SHA384
TLS DHE PSK WITH AES 128 CCM
TLS DHE PSK WITH AES 256 CCM
TLS PSK DHE WITH AES 128 CCM
TLS PSK DHE WITH AES 256 CCM
TLS ECDHE PSK WITH AES 128 GCM SHA256
TLS ECDHE PSK WITH AES 256 GCM SHA384
TLS ECDHE PSK WITH AES 128 CCM 8 SHA256
TLS ECDHE PSK WITH AES 128 CCM SHA256
TLS ECDHE PSK WITH AES 256 CCM SHA384
TLS ECDHE PSK WITH CHACHA20 POLY1305 SHA256
TLS DHE PSK WITH CHACHA20 POLY1305 SHA256

mandatory curve: secp256r1 (NIST P-256)
recommended curve: X25519 [RFC7748]
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10 Case Studies II
TLS: Transport Layer Security
The Biometric Passport
NFC Creditcard Payment
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ICAO-MRTD Objectives

(MRTD=Machine Readable Travel Document)

more secure identification of visitors at border control
→ biometrics
→ contactless IC chip
→ digital signature + PKI

maintained by UN/ICAO (International Civil Aviation Organization)
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How to Distinguish a Compliant MRTD
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MRTD History

1968: ICAO starts working on MRTD
1980: first standard (OCR-B Machine Readable Zone (MRZ))
1997: ICAO-NTWG (New Tech. WG) starts working on
biometrics
2001 9/11: US want to speed up the process
2002 resolution: ICAO adopts facial recognition
(+ optional fingerprint and iris recognition)
2003 resolution: ICAO adopts MRTD with contactless IC media
(instead of e.g. 2D barcode)
2004: version 1.1 of standard with ICC
2005: deployment of epassports in several countries
2006: extended access control under development in the EU
2007: deployment of extended access control (+ more
biometrics)
now part of Doc9303
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MRZ Example

PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

document type
issuing country
holder name
doc. number + CRC
nationality
date of birth + CRC
gender
date of expiry + CRC
options + CRC
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MRTD in a Nutshell

MRTD

MRZ LDS

? ?????
optical access radio access

data authentication by digital signature + PKI
aka passive authentication
access control + key agreement based on MRZ info
aka basic access control (BAC)
chip authentication by public-key cryptography
aka active authentication (AA)

SV 2016–17 Case Studies II CryptoSec 999 / 1037



Access Control Options

none: anyone can query the ICC, communication in clear
basic: uses secure channel with authenticated key
establishment from MRZ
extended: up to bilateral agreements (no ICAO standard)
EU common criteria: now being implemented
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LDS Example

- PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

DG1: same as MRZ
DG2: encoded face
DG3: encoded finger
SOD

6
,

?

-
[h(DG1),h(DG2), h(DG3)]
signature
certificate CDS
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LDS Structure

KENC, KMAC, KPrAA

COM: present data groups

DG1: same as MRZ

DG2: encoded face

DG3: encoded finger(s)

DG4: encoded eye(s)

DG5: displayed portrait

DG6: (reserved)

DG7: displayed signature

DG8: data feature(s)

DG9: structure feature(s)

DG10: substance feature(s)

DG11: add. personal detail(s)

DG12: add. document detail(s)

DG13: optional detail(s)

DG14: security options

DG15: KPuAA

DG16: person(s) to notify

SOD
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SOD Structure

list of hash for data groups DG1–DG15
formatted signature by DS (include: information about DS)
(optional) CDS
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(Country-wise) PKI

DG1 DG2

h(DG2)

LDS21 LDS22

SOD

DS1 DS2

CDS

CSCA - visited country
CCSCA

+ revocation protocol

one CSCA (Country Signing Certificate Authority)
several DS (Document Signer) per country
SOD: signature of LDS
fingerprint of a DG
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Passive Authentication

goal authenticate LDS
after getting SOD, check the included certificate CDS and the
signature
when loading a data group from LDS, check its hash with what is
in SOD

→ stamp by DS on LDS
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Passport: From Paper to Bits

paper passport

invisible if not shown
hard to copy
photocopies are non-binding
needs human check
access control by the holder

MRTD

detectable, recognizable
easy to copy with no AA
SOD is a digital evidence
readable automatically
needs specific access control
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Basic Access Control

goal prevent from unauthorized access by the holder (privacy)
read MRZ (OCR-B)
extract MRZ info
run an authenticated key exchange based on MRZ info
open secure messaging based on the exchanged symmetric key

→ proves that reader knows MRZ info
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MRZ info

PMFRADUPONT<<<<JEAN<<<<<<<<<<<<<<<<<<<<<<<<<

74HK8215<6CHE7304017M0705121<<<<<<<<<<<<<<03

document type
issuing country
holder name
doc. number + CRC
nationality
date of birth + CRC
gender
date of expiry + CRC
options + CRC
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Basic Access Control
Authenticated Key Exchange Based on MRZ info

IFD ICC

(derive KENC and KMAC from MRZ info)

GET CHALLENGE−−−−−−−−−−−−−−→
pick RND.IFD, K.IFD

RND.ICC←−−−−−−−−−−−−−− pick RND.ICC, K.ICC

S ← RND.IFD∥RND.ICC∥K.IFD
[S]KENC,KMAC−−−−−−−−−−−−−−→ check RND.ICC

check RND.IFD
[R]KENC,KMAC←−−−−−−−−−−−−−− R ← RND.ICC∥RND.IFD∥K.ICC

(derive KSENC and KSMAC from Kseed = K.ICC⊕ K.IFD)
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Active Authentication

goal authenticate the chip
proves that ICC knows some secret key KPrAA linked to a public
key KPuAA by a challenge-response protocol
(KPuAA in LDS authenticated by passive authentication)

→ harder to clone a chip
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Active Authentication Protocol

IFD ICC

pick RND.IFD RND.IFD−−−−−−−−−−−−−−−−−−−→ F ← nonce∥RND.IFD
check Σ←−−−−−−−−−−−−−−−−−−− Σ← SignKPrAA

(F )
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With vs Without Active Authentication

No Active Authentication

ICC can be cloned
simple computations to
perform

Active Authentication

protection against clones
requires public-key
cryptography in ICC
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RFID Private Collision Avoidance Protocol
(ISO 14443)

for each new singulation protocol
ICC introduces himself with a pseudo (32-bit number)
singulation to establish a communication link between reader
and ICC of given pseudo
pseudo is either a constant or a random number starting with 08
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Implementation Discrepencies (2007 Survey)

shield singulation BAC AA
Switzerland none random 08xxxxxx used not implemented
United Kingdom none random 08xxxxxx used not implemented
France none random 08xxxxxx ? ?
Australia none random xxxxxxxx used ?
New Zealand none constant used ?
USA yes random xxxxxxxx used ?
Italy ? constant ? ?
Belgium none cste then 08... used implemented
Czech Republic none random 08xxxxxx used implemented
Japan none ? not used not implemented
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With vs Without Faraday Cages

Regular Document

can access to ICC without the
holder approval

Metalic Cover

document must be opened to
access to ICC
more expensive
not fully effective
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Algorithms (2007 Survey)

certificate SOD AA
Switzerland ecdsa with sha1 824b ecdsa 512b n/a
United Kingdom sha256withRSA 4096b RSA 2048b n/a
Czech Republic rsaPSS (sha256) 3072b RSA 2048b RSA 1024b
Belgium sha1withRSA 4096b RSA 2048b RSA 1024b
Germany ecdsa with sha1 560b ecdsa 464b n/a
Italy sha1withRSA 4096b RSA 2048b ?
New-Zealand sha256withRSA 4096b RSA 2048b ?
USA sha256withRSA 4096b RSA 2048b ?
Japan sha256withRSA 4096b RSA 2048b n/a
Ireland sha256withRSA 4096b RSA 2048b ?
Netherland sha256withRSA 3072b RSA 2048b ?
South Korea rsaPSS (sha256) 3072b RSA 2048b ?
Sweden rsaPSS (sha256) 2048b RSA 2048b ?
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Security and Privacy Issues

collision avoidance discrepancies
→ deviating from standard induce leakages
MRZ info entropy
→ online attack or offline decryption from skimming
underestimated wireless range limits
→ claimed to be possible at a distance of 25m
identity theft (by stealing/cloning MRTD)
→ facial recognition is weak
remote passport detection
→ nice to find passports to steal
relay attacks
denial of services
...
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Identity Theft

? ?

biometry picture

-
6

steal identity

a few 100 customers are enough
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Extended Access Control (EAC)

PACE > BAC
Chip Authentication > AA
Terminal Authentication to access non-mandatory data
more biometrics (finger) for more secure identification

using state-of-the-art cryptography
(public-key crypto, PAKE, elliptic curves)
secure access control but requires a heavy PKI for readers

in-process standard: protocols with different versions, variants,
described in different documents, with different notations...
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Sequence of Steps for Basic Inspection

(optional) run PACE (or BAC), start secure messaging,
provide access to less-sensitive data
passive authentication of SOD

(optional) run AA
read and verify less-sensitive data
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Sequence of Steps for Advanced Inspection

(optional) run PACE (or BAC), start secure messaging,
provide access to less-sensitive data
(if not done in PACE) run Chip Authentication, restart secure
messaging
passive authentication of SOD

(optional) run AA
run Terminal Authentication v1,
provide access to more data
read and verify data
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PACE (GM v2)
better protocol (than BAC) based on π = MRZinfo
can include Chip Authentication

PCD IC
password: π password: π

secret key: SKIC

(g ∈ DICC) pub key: PKIC = gSKIC ,DIC

pick s at random
PKIC,DIC←−−−−−−−−−−

z = ENCKπ (s)
z−−−−−−−−−−→ s = DECKπ (z)

pick SKMAP,PCD, PKMAP,PCD = gSKMAP,PCD
PKMAP,PCD−−−−−−−−−−→ pick SKMAP,IC, PKMAP,IC = gSKMAP,IC

ĝ = gsPK
SKMAP,PCD
MAP,IC

PKMAP,IC←−−−−−−−−−− ĝ = gsPK
SKMAP,IC
MAP,PCD

pick SKDH,PCD, PKDH,PCD = ĝSKDH,PCD
PKDH,PCD−−−−−−−−−−→ pick SKDH,IC, PKDH,IC = ĝSKDH,IC

K = PK
SKDH,PCD
DH,IC

PKDH,IC←−−−−−−−−−− K = PK
SKDH,IC
DH,PCD

derive KSENC,KSMAC from K derive KSENC,KSMAC from K

TPCD = MACKSMAC(PKDH,PCD)
TPCD−−−−−−−−−−→ check TPCD

check TIC
TIC←−−−−−−−−−− TIC = MACKSMAC(PKDH,IC)

CAIC = DECKSENC(AIC), check CAIC
AIC←−−−−−−−−−− CAIC =

SKMAP,IC
SKIC

, AIC = ENCKSENC(CAIC)

output: KSENC,KSMAC,X = PKDH,PCD output: KSENC,KSMAC,X = PKDH,PCD
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Chip Authentication

chip has a static Diffie-Hellman key in DG14 (SOD-authenticated)
semi-static ECDH with domain parameters DICC

replace the secure messaging keys

→ resists passive attacks

IFD ICC
secret key: SKICC

(g ∈ DICC) pub key: PKICC = gSKICC ,DICC

pick x at random
PKICC,DICC←−−−−−−−−−−−−−−−

X = gx X−−−−−−−−−−−−−−−→
K = KDF(PKx

ICC) K = KDF(X SKICC )
derive KENC, KMAC from K derive KENC, KMAC from K

output: K , KENC, KMAC,X output: K ,KENC, KMAC, X
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Terminal Authentication

terminal sends a certificate to chip (ECDSA)
terminal signs a challenge + ephemeral key X from Chip
Authentication
IDICC set to serial number (for BAC) or to ephemeral key of ICC
(for PACE)

→ strong access control

IFD ICC

certificate(PKIFD)−−−−−−−−−−−−→ check
F ← IDICC∥ricc∥H(X )

ricc←−−−−−−−−−−−− pick ricc

sIFD ← SignSKIFD
(F )

sIFD−−−−−−−−−−−−→ check
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Terminal Authentication Issues

Terminal revocation issue:
MRTDs are not online!
MRTDs have no reliable clock

−→ MRTD must trust readers to revoke themselves
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Information Leakage

SOD leaks the digest of protected DGs before passing EAC
could be used to recover missing parts from exhaustively search
could be used to get a proof if DG is known
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Conclusion on MRTD

LDS: contains too much private information
passive authentication: leaks evidence for LDS
BAC: does a poor job
secure messaging: OK
AA: leaks digital evidences, subject to MITM
EAC: much better, but still leaks + revocation issue
RFID: leaks
biometrics: leaks template

“Les passeports ne servent jamais qu’à gêner les
honnêtes gens et à favoriser la fuite des coquins.”

Jules Verne, 1872
Le tour du monde en 80 jours
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10 Case Studies II
TLS: Transport Layer Security
The Biometric Passport
NFC Creditcard Payment
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(Simplified) EMV PayPass Protocol

PrivC,KM -Cert(PubC,SSAD),PAN,CDOL
verify

� UN, amount, info
pick UNinc. ATC

-ATC,SDAD
compute verify

KM

?

AC
amount

ATC
info

PAN: serial number of the card

SSAD: info about the card including PAN

CDOL: description of what is needed in info

ATC: number of the transaction

AC = MACEncKM
(ATC)(amount,ATC, info)

SDAD = SignPrivC(AC,UN, amount,ATC, info)
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From Paper to Bits...

holder is not aware a payment is happening
holder is not aware of the payment amount
no access control of the payment terminal (no PIN)
payee is not authenticated (info could be anyone)
privacy issue (SSAD leaks)
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Skimming

PrivC,KM -Cert(PubC,SSAD),PAN,CDOL

get name on card, credit card number, expiration date, etc
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Relay Attacks

honest
prover

honest
verifier

adversary

-a -a -a

�b � b �b

-c -c -c
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Relay Attacks in Real

opening cars and ignition (key with no button)
RFID access to buildings or hotel room
toll payment system
NFC credit card (for payment with no PIN)
access to public transport
...
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Playing against two Chess Grandmasters

�

-
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Conclusion

TLS: standard for e-commerce, suffer from PKI weaknesses
MRTD: secure data authentication, poor privacy
EMV PayPass: secure for payee, not payer, poor privacy

they all put together all cryptographic ingredients quite nicely
they are permanently improved to fix mistakes and use the
state-of-the-art cryptography
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Train Yourself

biometric passport: final exam 2015–16 ex3
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