
Reverse code engineering of .NET

applications
Shukhrat Nekbaev

Supervised by

Dr. Simo Juvaste

Master’s thesis.

August 12, 2013

School of Computing

University of Eastern Finland, Joensuu, Finland.

Acknowledgements

First of all I would like to thank my family for all their support and understanding.

Special thanks to Jussi Parkkinen and everyone related to IMPIT program for the

opportunity to study at the UEF.

In particular, I would like to thank my thesis supervisor Dr. Simo Juvaste for

the fantastic “Parallel programming” course whose mind-intensive homeworks caused

sleepless nights for many students and, without a doubt, it was worth it.

Special thanks to Daniel Pistelli1, an author of several articles and tools used in

this research, who kindly agreed to proofread it.

Thanks to all my friends for their valuable comments and for just being around

when needed. Last but not least, huge thanks to George Carlin2, a brilliant stand-up

comedian who has influenced my view of life.

1http://www.ntcore.com
2http://en.wikipedia.org/wiki/George Carlin

Abstract

This work is a research into the reverse code engineering of .NET applications in

which the operational principles of the .NET Framework are analyzed. It is based on

studying the changes introduced to the structure of the Windows Portable Executable

file format (PE) in order to accommodate .NET specific requirements. Moreover, the

thesis presents information about the .NET application execution process and its

runtime handling, and points out the differences in the protection schemes between

unmanaged and managed applications.

The study provides insight into some of the most popular .NET application reverse

engineering methods and common protection schemes applicable to the .NET. A

concrete commercial application was selected for the conclusive part of the practical

chapter. This is due it being protected by an interesting, yet powerful and heavily

obfuscated virtual machine based code protector. What’s more, no information on

its analysis was available on the Internet at the time of writing.

Furthermore, an example of an attack during runtime is shown and the potential

benefits of such an attack are evaluated. Lastly, the advantages of attacking the .NET

Framework itself are considered.

Keywords: reverse code engineering, .NET Framework, protection analysis, disas-

sembly, decompilation, static analysis, debugging, code protection, intellectual prop-

erty

DISCLAIMER

THE INFORMATION PROVIDED IN THIS WORK IS FOR EDUCA-

TIONAL PURPOSES ONLY. THE USE OF THIS MATERIAL FOR

ANY AND ALL ILLEGAL PURPOSES IS STRICTLY PROHIBITED

AND THE MATERIAL ITSELF IS NOT BE TREATED AS A SOURCE

OF INSPIRATION FOR SUCH ACTIVITIES. IT CANNOT BE USED

TO INITIATE LEGAL PROCEEDINGS AGAINST THE AUTHOR HIM-

SELF AND/OR AUTHORS REFERENCED THROUGHOUT THE MA-

TERIAL. THE READER HEREBY AGREES TO HAVE A NEUTRAL

OPINION ON THE SUBJECT.

Contents

Abstract i

Disclaimer i

List of figures iv

List of abbreviations v

Introduction 1

1.1 The topic . 1

1.2 Motivation behind the topic and thesis problem statement 2

1.3 Scope of the thesis . 3

1.4 Structure of the thesis . 4

2 Background 5

2.1 Java exists already, why use .NET? 5

2.2 .NET Framework structure . 6

2.3 From source code to executable binary 8

2.3.1 .NET Assembly . 9

2.3.2 Physical layout of internal structures 11

2.3.3 CLR’s perspective . 13

2.4 .NET application execution . 15

2.4.1 Execution: step one . 16

2.4.2 Execution: step two . 17

2.5 Execution security . 21

3 Practical part 23

3.1 Part 1: Common RCE techniques applicable to .NET 26

ii

CONTENTS

3.1.1 Native code debugger . 27

3.1.2 Native code debugger with .NET-awareness 36

3.1.3 Static analysis and application modification 45

3.1.4 CIL round-tripping . 46

3.1.5 Byte-patching . 47

3.1.6 Patching with decompiler and Mono.Cecil 49

3.2 Part 2: Analysis of the InishTech SLP software protection 54

3.2.1 Initial analysis . 54

3.2.2 Testing on a commercial application 68

4 Additional areas of interest 73

5 Conclusion and future work 77

Bibliography 79

Appendix A Dumpbin utility output for SampleApp.exe 84

Appendix B Stack trace of the protected method call 88

iii

List of Figures

2.1 .NET Framework overview [Mic13h] 8

2.2 The high-level overview of a PE [Mic13f] 9

2.3 calc.exe opened in PEView. PE loader reads this structure, processes

and loads it into memory for execution. 10

2.4 The compilation and execution process of the assembly [Mic13e] . . . 10

2.5 A high-level overview of the extended PE [Mic13n]. 11

2.6 A .NET file loaded in CFF Explorer [Mic13n] 13

2.7 Single module assembly content [Mic13a] 14

2.8 Layout of an object with its underlying structures [PNSS08] 19

3.1 An example of a pseudo-real commercial software 27

3.2 ECX and EDX contain pointers to string objects with user data 31

3.3 Successful registration. Username is “Test12” and corresponding pass-

word is “49050” . 36

3.4 Patching at runtime. Application was tricked into believing it is regis-

tered . 44

3.5 CFFExplorer navigation and modification capabilities 50

3.6 The original application converted into a key generator 53

3.7 Helper application . 56

3.8 Code Protector application ready to process WinForms.exe 58

3.9 The first argument analysis . 67

3.10 Revealed execution pipeline and endpoint. 70

3.11 Custom debugger assistant. 71

4.1 .NET reflection at its glory . 75

iv

List of abbreviations

.NET .NET Framework

BCL Base Class Library

CIL Common Intermediate Language

CLI Common Language Infrastructure

CLR Common Language Runtime

CLS Common Language Specification

COM Component Object Model

CTS Common Type System

DLL Dynamic link library

FCL Framework Class Library

IAT Import Address Table

IIS Internet Information Services

INT Import Name Table

IP Intellectual property

JVM Java Virtual Machine

OS Operating system

PE Portable executable

RCE Reverse code engineering

v

LIST OF FIGURES

RVA Relative Virtual Address

VA Virtual Address

VES Virtual Execution System

vi

Introduction

It has been over a decade since the introduction and the standardization of the .NET

Framework. Over the years, the framework has dramatically evolved, becoming rich

in features as well as a popular development platform among developers. Many com-

panies have developed numerous applications, components, integrated development

environments, compilers and even open source implementations. Nevertheless, since

the platform introduction, a major concern of resilience to reverse code engineering

(RCE) remained. Quite a few solutions followed up. For several years these solu-

tions seemed satisfactory. However, with the growing popularity of the platform,

RCE community finally turned its attention to it, and anticipated countermeasures

appeared.

Following the quote of Stanley Lieber1:

“With great power there must also come - great responsibility!”

a similar quote can be formulated as applied to software:

“With great popularity of an application there must also come - great concern

regarding protection of intellectual property”.

However, one might wonder: ”Why just a concern, but not bullet-proof protec-

tion?” The answer can be found within the chapters of this thesis.

1.1 The topic

Reverse code engineering (RCE) can be simply considered a process of obtaining the

knowledge about the internal working principles of the software without having ac-

cess to its source code. This subject is often neglected in academic institutions or

mentioned shallowly [Pot05]. Debates on the topic raise ethical concerns, though its

importance and existence cannot be underestimated or ignored. The RCE process

1better known as Stan Lee. A famous American comic book writer

1

LIST OF FIGURES

provides numerous opportunities, such as but not limited to: bridge interoperabil-

ity gaps between systems, performing security analysis [Mor08] and development of

countermeasures, detection of software bugs, analysis of software behavior, and devel-

opment of alternative software using Cleanroom [LT13] software development process.

On the other hand, this offers the opportunity to circumvent copy protection (pre-

vention) schema in the original software, create malicious software, disclose valuable

algorithms, and create an almost identical replica or utilize vulnerabilities for poten-

tially illegal activity. RCE use cases are not limited to the aforementioned options,

but can be further used in conjunction with other methods. Despite the fact that the

purpose of a concrete RCE process is solely related to its goals, an important matter

of intellectual property (IP) protection remains.

RCE, apart from being an art, is a chess-like game between the person who has

written the code and the person who wants to understand how it works from its

binary representation. The internal structure of the .NET application, the execution

process and the RCE specific to the .NET are explained in the following chapters.

1.2 Motivation behind the topic and thesis prob-

lem statement

I can honestly say that this thesis was motivated by curiosity. I have developed

numerous web applications and free software utilities throughout my .NET career.

IP protection was not really a concern because the former were deployed to internal

corporate servers, thus protected by an enterprise firewall2 and the latter were open

source. However, sooner or later, all developers face the question of code protection

regardless of the motivation behind it. Preliminary research on the subject yields not

only some general recommendations, but also commercial and free software protection

solutions.

From the developer’s perspective I want to understand the principles of .NET

application protection and methods to work around them. From my point of view

such a dualistic approach provides valuable insight to the .NET internals, promotes

better understanding and improves programming expertise regarding code protection.

It is obvious that this knowledge is crucial for anyone doing binary analysis, e.g.

experts working in antivirus or security companies. Malicious software written in

2this is however not an excuse not to consider the protection

2

LIST OF FIGURES

managed code is a reality too.

Generally, I consider this work applicable not only to the .NET Framework, but

also to any other intermediate language based frameworks, including Java software

platform, because their internal implementation and operational principles are almost

identical.

1.3 Scope of the thesis

This thesis focuses on RCE analysis of existing code protection solutions and copy

prevention mechanisms for .NET rich client applications [Mic13o]. This application

type represents a stand-alone client application which is usually installed on the end

users’ computers, but can also be executed over the network share. Nevertheless, the

presented RCE methods can also be applied to other .NET application types with

regard to specifics of a concrete application type and its execution environment, e.g.

a web application compiled as a dynamic link library (DLL) and hosted by Internet

Information Services (IIS) application.

The following areas of interest are researched:

• resilience of .NET applications to RCE

• .NET application internal structure and its difference from unmanaged appli-

cation

• execution process of a .NET application and .NET runtime

• existing code protection solutions for .NET applications, their strengths and

weaknesses

• hands-on RCE examples with sample applications

• RCE of a protected commercial application

• recommendations for developers for improving the resilience of the software

The Windows operating system has been used as a host platform for .NET Frame-

work. In order to support .NET Framework executables, modifications were intro-

duced to the Windows portable executable (PE) file structure. These changes are

explained later.

It should be explicitly mentioned that existing RCE methods are not limited to

the ones discussed in this thesis, because each concrete task requires an individual

approach. Based on personal experience and the tools available, a reverse engineer

selects suitable methods and adapts them accordingly in order to solve a particular

3

LIST OF FIGURES

case. Furthermore, background information is only presented in a scope relevant

to the topic of the thesis and to sample applications used for analysis. The reader

is recommended to visit the referenced sources in order to better understand the

material.

1.4 Structure of the thesis

Chapter 2 provides background information about the origin of the .NET Framework,

the typical .NET application structure in addition to its compilation and execution

process details.

Chapter 3 is divided into two parts. The first part describes the most notable

RCE methods applicable to .NET with practical examples, whereas the second part

is dedicated to the analysis of a commercial protector. Therefore, a practical example

of a software application protected by it is presented.

Chapter 4 is related to attacking .NET applications at runtime, benefits of modifi-

cation of .NET Framework core libraries and power of the .NET reflection mechanism.

The closing Chapter 5 summarizes the results of the performed research, outlines

the most interesting aspects and proposes ideas relevant for future work.

4

Chapter 2

Background

The .NET Framework is a Microsoft-developed software framework supporting de-

velopment and execution of applications that leverage code access security, language

interoperability, automatic memory management, runtime security, simplified deploy-

ments and version conflict resolution, massive class library, etc. [Mic13j]. At the

moment of writing the thesis, Microsoft officially supported and developed the .NET

Framework only for its proprietary operating systems1 despite the fact that the frame-

work was designed to be platform independent. Additionally, other implementations

of the underlying standard exist. For example, the Mono project is a well-known

open source cross platform implementation of the .NET Framework [Xam13].

2.1 Java exists already, why use .NET?

The .NET Framework shares a lot of similarities [Far13] with the Java software plat-

form that has been developed by Sun Microsystems2. To understand the reason we

have to look back at the second half of the 1990s when Java was introduced in 1996

and rapidly became one of the most popular programming languages. Its platform

featured automatic memory management, rich class library, portability, security, and

enabled the possibility to easily develop functional desktop applications and more

interactive web sites. Microsoft joined the trend in 1996 and licensed Java, but soon

was sued by Sun Microsystems for licensing agreement violations [CNE13]. Besides

millions of dollars lost, Microsoft found itself in an unfavorable position, and decided

to abandon Java under the circumstances. Nevertheless, there was a desperate need

1mainly Windows family, but their Xbox console runs its own OS[sha13]
2was acquired by Oracle Corporation in 2010

5

CHAPTER 2. BACKGROUND

for Microsoft to come up with a solution that could compete with the Java platform.

The .NET Framework was introduced several years later, yet it took an additional

couple of years until its official release in early 2002.

At the moment of introduction there was a confusion regarding what the .NET

Framework actually was and how it compared to the Java platform. One of the early

pre-release attempts was presented by Jim Farley [Far13]. He compared the under-

lying concept of the .NET Framework with the J2EE side by side and confirmed

that both platforms were very much alike. It is certain that for this thesis the most

important .NET design feature is the code compilation and execution model. Just

as Java code is compiled into bytecode which is then executed by the Java Virtual

Machine (JVM), most CLI compilers3 generate a platform and source language in-

dependent .NET output called the Common Intermediate Language (CIL) executed

by the Common Language Runtime (CLR). Because of technical accuracy it is worth

mentioning that the CLI compiler outputs the CIL and relevant metadata in a single

unit called a module which in turn is enclosed into another logical container called an

assembly because the CLR can only operate on assemblies. This is discussed in more

detail later on in the thesis.

2.2 .NET Framework structure

The .NET Framework consists of two major components:

• Common Language Runtime (CLR)

• Framework Class Library (FCL)4

According to the Microsoft .NET Framework Conceptual overview [Mic13h] the

CLR is a foundation of the .NET Framework that handles code execution, provides

supportive core functionality, and enforces both type safety and code accuracy pro-

moting robustness and security. It is designed to provide a simplified, fast and feature

rich programming infrastructure that automatically handles most of the lower level

APIs, e.g. communication, memory management, I/O operations etc. [Fra03]. On

the other hand the FCL is a comprehensive collection of reusable object-oriented

types that the developer can utilize for a variety of .NET application types [Mic13h].

3some CLI compilers are capable of outputting the CIL and native instructions
4the FCL includes the Base Class Library (BCL) that contains fundamental types and core

functionality

6

CHAPTER 2. BACKGROUND

The CLR is Microsoft’s implementation of the Common Language Infrastructure

(CLI). Microsoft developed the CLI specification with its partners and it was stan-

dardized by ISO and ECMA. ECMA-335 describes the standard as follows:

“This Standard defines the Common Language Infrastructure (CLI) in which ap-

plications written in multiple high-level languages can be executed in different system

environments without the need to rewrite those applications to take into consideration

the unique characteristics of those environments” [Mic13n]

Partition I “Concepts and Architecture” of the standard describes the overall

architecture of the CLI, Common Type System (CTS), Virtual Execution System

(VES), Common Language Specification (CLS) and metadata.

The description of the VES in Partition I and the metadata in Partition II rep-

resent particular interest for RCE purposes along with Partition III of the standard

that provides details on the CIL instruction set. For that reason ECMA-335 is fre-

quently referenced throughout the thesis. Also, aside from being a valuable source

of knowledge for RCE, it is highly recommended reading material for all .NET/CLI

developers.

In order to understand the .NET Framework, H. Gilbert [Gil13] suggested to com-

pare it to the OS. The OS takes advantage of x86 hardware level security capabilities

to isolate kernel space from user space (privilege rings, segmentation). Processes are

separated into their own address spaces while the OS manages the memory for multi-

ple processes running in it, allocates and cleans up requested resources, and handles

and recovers from errors. Similarly, the .NET Framework manages the execution of

its applications by adding an additional level of security and integrity on top of the

one provided by the OS.

Figure 2.1 illustrates a high-level overview of .NET Framework. The left hemi-

sphere illustrates the relationship between the .NET application and the OS. The

.NET application can use the FCL (at least its BCL subset because it encapsulates

core types and core functionality) and third-party libraries (.NET or unmanaged).

Execution of the .NET application is handled by the CLR and eventually only the run-

time communicates with the OS directly. The same concept is applicable to .NET web

applications: they are also executed by the CLR but inside an unmanaged pipeline

via the CLR hosting extensibility. Unmanaged applications5 communicate with the

OS directly via APIs.

5a.k.a. native code applications not supervised by the CLR

7

CHAPTER 2. BACKGROUND

Figure 2.1: .NET Framework overview [Mic13h]

2.3 From source code to executable binary

It is established that any application is developed using a specific programming lan-

guage and must afterwards be converted into either a representation natively under-

stood by the target execution platform, or into an intermediate language that will be

interpreted and executed by a native host application running on the target execution

platform. This is called compilation. If an application must be executed natively by

the target platform, then a conversion to an executable is performed in two main

steps. First, the compilation process produces object files, which are then processed

by the linker application. Afterwards, the linker processes the object files, analyses

their structure and groups entities into sections by logical similarity, performs ad-

ditional target platform specific operations, and outputs a single executable file. A

prime example of such an executable is the Microsoft’s proprietary PE file format

described by Microsoft [Mic13f]. Despite Microsoft providing an official specification

document [Mic13f], a note on the first page states that it is provided to aid the devel-

opment of tools and applications for Windows products, and is not guaranteed to be

a complete specification. It can change without notice. PE is often referred as PE32

for 32-bit systems and PE32+ for 64-bit systems. Figure 2.2 illustrates the PE file

8

CHAPTER 2. BACKGROUND

structure.

Figure 2.2: The high-level overview of a PE [Mic13f]

Figure 2.3 illustrates a concrete example of the PE file structural layout:

2.3.1 .NET Assembly

When the .NET Framework application is compiled in Visual Studio, a PE file (EXE

or DLL) is produced. It is called an assembly6 in the terms of .NET. Note that the

terms assembly, .NET file and managed code applications are used interchangeably

throughout the thesis. Some compilers such as Microsoft’s C++/CLI are capable of

mixed assembly compilation. The mixed assembly contains both CIL and native code

[Mic13g]

Assembly is a self-describing logical container and a fundamental unit of physical

code grouping [Hew10] [Gun13]. The PE file format was extended to accommodate

the new structure. Partition II of ECMA-335 [Mic13n] provides a detailed reference

of the CLI file format.

6not to be confused with Assembly language

9

CHAPTER 2. BACKGROUND

Figure 2.3: calc.exe opened in PEView. PE loader reads this structure, processes and

loads it into memory for execution.

Figure 2.4: The compilation and execution process of the assembly [Mic13e]

10

CHAPTER 2. BACKGROUND

Figure 2.5: A high-level overview of the extended PE [Mic13n].

2.3.2 Physical layout of internal structures

Figure 2.5 represents a typical .NET file structure. The purpose of native sections is

explained in section 2.4.

PE Headers are the same for unmanaged applications and most information is

irrelevant for the CLR. An entry in Optional Header’s Data Directories list (ordinal

number 15 or 14 if zero-based) contains a relative virtual address (RVA) to the CLI

header and its size. This entry is defined in WinNT.h (Microsoft SDK) as

#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor

and is used for .NET purposes despite its name. The Microsoft PE Specification

describes it as the CLR Runtime Header [Mic13f]. The actual CLI header is defined

in WinNT.h78:

// CLR 2.0 header structure.

typedef struct IMAGE_COR20_HEADER

{

// Header versioning

DWORD cb;

WORD MajorRuntimeVersion;

WORD MinorRuntimeVersion;

// Symbol table and startup information

IMAGE_DATA_DIRECTORY MetaData;

DWORD Flags;

// If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is not set, EntryPointToken

7also in CorHdr.h. It still exists in SDK 7.0A and probably either one of them will be removed
in the future.

8side note: CorHdr.h contains a link to Wikipedia :)

11

CHAPTER 2. BACKGROUND

// represents a managed entrypoint.

// If COMIMAGE_FLAGS_NATIVE_ENTRYPOINT is set, EntryPointRVA

// represents an RVA to a native entrypoint.

union {

DWORD EntryPointToken;

DWORD EntryPointRVA;

} DUMMYUNIONNAME;

// Binding information

IMAGE_DATA_DIRECTORY Resources;

IMAGE_DATA_DIRECTORY StrongNameSignature;

// Regular fixup and binding information

IMAGE_DATA_DIRECTORY CodeManagerTable;

IMAGE_DATA_DIRECTORY VTableFixups;

IMAGE_DATA_DIRECTORY ExportAddressTableJumps;

// Precompiled image info (internal use only - set to zero)

IMAGE_DATA_DIRECTORY ManagedNativeHeader;

} IMAGE_COR20_HEADER, *PIMAGE_COR20_HEADER;

The CLI Header contains information about the required version of the CLR run-

time, RVAs to the metadata structure, resources, a strong name, and an entry point.

To obtain additional information about executing an application, the CLR parses

the Flags entry which is represented by the ReplacesCorHdrNumericDefines structure

defined in CorHdr.h:

typedef enum ReplacesCorHdrNumericDefines

{

// COM+ Header entry point flags.

COMIMAGE_FLAGS_ILONLY =0x00000001,

COMIMAGE_FLAGS_32BITREQUIRED =0x00000002,

COMIMAGE_FLAGS_IL_LIBRARY =0x00000004,

COMIMAGE_FLAGS_STRONGNAMESIGNED =0x00000008,

COMIMAGE_FLAGS_NATIVE_ENTRYPOINT =0x00000010,

COMIMAGE_FLAGS_TRACKDEBUGDATA =0x00010000,

... other entries omitted

Important flags:

• COMIMAGE_FLAGS_ILONLY - contains CIL only. No native code

• COMIMAGE_FLAGS_32BITREQUIRED requires 32-bit process to execute

• COMIMAGE_FLAGS_STRONGNAMESIGNED - if set then assembly is signed with a strong

name signature

• COMIMAGE_FLAGS_NATIVE_ENTRYPOINT - if set then entry point in IMAGE_COR20_HEADER

is represented by EntryPointRVA, thus RVA to native code method, otherwise

12

CHAPTER 2. BACKGROUND

by EntryPointToken, a token that points to a method in managed module via

Method Definition table

In order to remain focused on the topic I have to take a shortcut, and fortunately

there happens to be an excellent article written from the developer’s perspective

about the internal .NET file format. It is based on ECMA-335, PE specification

and RCE experience, which eventually became a PE editor side project called CFF

Explorer. The reader is strongly encouraged to download the CFF Explorer [Pis13a],

load any unprotected .NET application into it, and read the article in question [Pis13e]

simultaneously. The knowledge in the article in question is essential in order to

understand the execution process described later on.

Figure 2.6: A .NET file loaded in CFF Explorer [Mic13n]

2.3.3 CLR’s perspective

Formerly, the assembly was defined as a self-describing logical container. It contains

a manifest, a module9 and/or resources (e.g. image files, icons, etc.).

“An assembly manifest contains all the metadata needed to specify the assembly’s

version requirements and security identity, and all metadata needed to define the scope

9multiple modules per assembly are also supported (via assembly linker AL.exe) but rarely used

13

CHAPTER 2. BACKGROUND

Figure 2.7: Single module assembly content [Mic13a]

of the assembly and resolve references to resources and classes” [Mic13b].

IL DASM tool10 can display manifest content.

ECMA-335 defines the module as “a single file containing executable content”.

A module consists of type metadata and the CIL. However, the CIL content is not

mandatory. In practice, a module always contains both type metadata and the CIL.

An example of a module is presented in Figure 2.7 as Type metadata and MSIL code11.

A module, similarly to the assembly, has a self-descriptive nature. Its type meta-

data is used to “describe runtime types (classes, interfaces, and value types), fields,

and methods, as well as internal implementation and layout information that is used

by the common language runtime (CLR)” [Mic13i]. Despite the CIL being contained

in modules, the CLR itself operates on assemblies and relies on metadata.

Partition II of ECMA-335 [Mic13n] along with two Microsoft articles [Mic13i],

[Mic13b] provide further details.

The CIL is the instruction set common for all CLI applications and its specifica-

tion is described in Partition III of ECMA-335 [Mic13n]. It is generated by the CLI

compiler and is platform and language independent. The same application written

and compiled in two different CLI languages has a high probability of generating the

same CIL output. The CIL exposes complete functional capabilities of the CLI, but

higher-level CLI languages utilize only a subset of this instruction set. ECMA-335

and the CLR ensure the correctness and verifiability. More specifically, the CLR

management is exposed as an execution time type control, exception handling (not

by OS) and automatic disposal of unused objects [Lid06]. Compared to x86 assem-

bly, it is a high-level object oriented programming language that uses an evaluation

stack. The evaluation stack is a storage for values, and the CIL instructions must put

10part of Windows SDK
11synonym of CIL

14

CHAPTER 2. BACKGROUND

values to and take values from it to operate. Unlike the stack of an x86 unmanaged

application, the evaluation stack is not addressable, and additionally the CIL has no

registers. Also its size, types in slots, and local variables are predetermined. Such

strict enforcement rules are required for the CLR to be in charge, and in my opinion,

assist a reverse engineer to some extent because the .NET protectors also have to fol-

low the same rules, thus limiting their CIL manipulation options. Consider a simple

example: it is possible to jump into the middle of an instruction during execution

in x86 assembly code. As the result, an updated EIP register may point to a valid

beginning of the new instruction from which the CPU will transparently continue

the execution. Meanwhile, the static analysis in a disassembler would be present-

ing disassembly that might not make much, if any, sense unless manually corrected.

Obviously, this feature is used as an anti-RCE measure by native code protectors.

Finally, the CIL opcodes for .NET applications, just as Java bytecode, are simple to

decompile and obtain high-level language representation due to the design nature of

runtime-based platforms. Free third-party tools are available12. Contrary to managed

code applications, unmanaged applications are disassembled. Machine instructions

are mapped to the corresponding assembly language instructions. Moreover, no well-

organized type metadata is available. Decompilation of such a disassembly is known

to be a very difficult task. A decent set of tools such as the Hex-Rays IDA and the

Hex-Rays Decompiler may cost thousands of dollars. However, the gained benefits

are usually tremendous.

2.4 .NET application execution

The execution process can be divided into two major parts. The first part would

be analyzing the binary data of a .NET executable on a disk until the CLR takes

control. The CLR being in control can be seen as the second part. Such an approach

is required to reflect the .NET file structure presented earlier in a concrete example.

For that purpose, a simple .NET application was compiled in Visual Studio 2010

using the release configuration:

using System;

namespace SampleApp

{

class Program

{

12similar tools are included as part of Windows SDK

15

CHAPTER 2. BACKGROUND

static void Main(string[] args)

{

Console.WriteLine("I’m not hiding anything");

}

}

}

2.4.1 Execution: step one

The compiled assembly was processed by the DumpBin utility which is a part of

the Visual C++ build tools. This tool analyses the PE file and outputs a detailed,

well-formatted, human-readable description of the file structure13:

dumpbin /all SampleApp.exe > SampleApp.txt

A quick analysis yielded the following results:

• 32-bit executable

• 3 sections: .text, .rsrc and .reloc

• 0x400000 image base with entry point at RVA 0x276E (0x0040276E)

• non-empty COM Descriptor Directory

• single import entry to CorExeMain exported by mscoree.dll

• NX compatible and no SEH

• CLR Header: IL Only and 32-Bit Required flags set

• CLR Header: no strong name signature

• CLR Header: managed code entry point token 6000001

The entry point (0040276E) points to the stub code in .text section to start the

CLR. The import directory starts at RVA 0x2720 and contains a single entry for

mscoree.dll. This entry’s Import Address Table (IAT) is located at RVA 0x2000 for

the single imported function - CorExeMain (or CorDllMain in case of DLL). It is known

that on disk the IAT and the Import Name Table (INT) both point to the same

location, in this case the RVA 0x2750. During execution the PE loader will fill the

IAT with correct addresses of the imported functions. Windows does not support

position independent code and if the PE file is not loaded at the desired image base

then the PE loader uses .reloc section to update addresses throughout the loaded PE

sections. In the current example a single entry in .reloc points to the RVA 0x2770

(entry point at RVA 0x276E + 2 bytes = RVA 0x2770). The RVA 0x2770 or the VA

13content (except raw data to preserve space) is presented in A

16

CHAPTER 2. BACKGROUND

0x402770 points to a location that contains the target address for the jmp instruction

as explained further on. The CFF Explorer has a built-in simple disassembler. The

entry point address reveals the following opcodes:

Address Opcode Instruction

0040276E: FF25 00204000 jmp [0x402000]

A two bytes opcode FF25 is a far indirect jump. Here it jumps to the address at

memory location 0x402000 (i.e.: pointer dereference). During execution the IAT will

contain the correct address of the imported CorExeMain function. As the result this

imported function call bootstraps the CLR for OSes not aware of .NET. For OSes

aware of .NET14, such as Windows XP and newer, the stub code is simply skipped

[Hew10]. Their PE loader is capable of recognizing the .NET file and bootstrapping

the CLR if required.

Third .rsrc PE section contains two entries: VERSIONINFO structure and WinSxS

application manifest file. This manifest file is not the same as the assembly manifest

described earlier and has only a conceptual relation to .NET. It is used by Win-

dows side by side technology to address the DLL versioning problem for unmanaged

applications.

Finally, an NX-compatible flag being set and the SEH flag being absent is also

common for .NET files. As has been noted, a .NET file is a self-describing managed

code container which is handled by the CLR, thus there is no need for Windows’s

SEH for executing application because the CLR provides its own exception handling

mechanism. In conclusion, the last three entries in the analysis list describe the .NET

specific characteristics of the file: only managed code that CLR must compile as 32-

bit native instructions, absence of strong name signature and first entry in Method

Definition metadata table are a managed entry point. As described by M. Hewardt

[Hew10] and D. Pistelli [Pis13e], the managed entry point is represented by a 4-byte

token. The high-order byte (0x06) is a table number and the three low-order bytes

(0x000001) are an index into that table.

2.4.2 Execution: step two

A .NET aware OS PE loader, depending on the bitness of executing application, loads

a corresponding 32-bit or 64-bit version of the aforementioned mscoree.dll15. This

14modified PE loader
15acronym for Microsoft Common Object Runtime Execution Engine

17

CHAPTER 2. BACKGROUND

DLL is a shim DLL which is used to validate the loading PE file via CorValidateImage

function and bootstrap the CLR. Therefore, if validation succeeds, the PE loader calls

CorExeMain (or CorDllMain for DLL) directly regardless of the entry point value

specified in the Optional Header of the executing PE file [Mic13c]. This call instanti-

ates the required version of the CLR and delegates the execution to the entry point

defined in the CLI Header. The CLR itself is implemented as a Component Object

Model (COM) server in Clr.dll for the framework version 4.0 and in MSCorWks.dll

for earlier versions [Ric10]. COM implementation is an extensibility feature and al-

lows any application to host the CLR. When the COM server is started, or in other

words when the CLR is initialized, it creates three application domains (AppDo-

mains): system, shared and default [Hew10]. Certainly, an application can explicitly

create additional AppDomains. The executing assembly is loaded into the default

AppDomain. The system AppDomain tracks and manages the loaded AppDomains.

The shared AppDomain is used as a storage for assemblies whose types can safely

be shared between domains such as MSCorLib.dll. The AppDomain is a .NET

specific concept which serves as a secure and isolated code execution environment,

thus a single application can have multiple AppDomains loaded, and code from one

AppDomain cannot access code in another AppDomain directly but only through

well-defined mechanisms [Ric10]. The OS has no knowledge of the AppDomains.

Microsoft’s CLR is a proprietary CLI implementation, and obviously there is no

source code available. In order to continue the recital I have to temporarily stray from

the CLR context. Fortunately, Microsoft Research has developed a shared source

CLI implementation called SSCLI also known as the Rotor. The SSCLI resembles a

modified subset of the CLR. Core implementation aspects are applicable to the CLR,

especially to versions before 4.0, because the SSCLI hasn’t been developed since its

version 2.0.

According to J. Pobar et al. [PNSS08], every type instance created via newobj or

newarr CIL instructions has a reference to the Method Definition metadata table16.

Consequently, the ClassLoader uses MethodTable and EEClass structures to build

the in-memory pointer-based layout representation essential to the VES. These two

structures represent the same concept but are required to separate type fields by usage

frequency: frequently used ones are stored in the MethodTable and the rest are stored

in the EEClass structure[Hew10]. J. Pobar et al. [PNSS08] define it as “hot” and

“cold” data separation, and it is an optimization feature. Another known and notable

16named as MethodTable on Figure 2.8

18

CHAPTER 2. BACKGROUND

Figure 2.8: Layout of an object with its underlying structures [PNSS08]

performance optimization is the deferral compilation: if a class has two methods, e.g.

A and B, and an arbitrary code is calling only A, then only A will be compiled, unless

A calls B internally, which will also trigger the compilation for B. Deferral compilation

is achieved with the help of special code stubs. When a MethodTable table is laid out,

each entry is mapped to a temporary entry point function called precode helper, which

invokes a method specific code called prestub [PNSS08]. In this case the precode stub

simply passes the method’s MethodDesc pointer to the prestub. The prestub uses

the passed argument which points to method specific information and performs the

actual compilation. Finally, it modifies the entry in the MethodTable by overwriting

the initial pointer to the precode stub with a pointer to a memory region that contains

compiled native code for the method in question. The latter modification ensures that

subsequent method calls will occur without a performance hit. This happens because

the compilation is not required and the previously compiled native code can be reused.

The CLR delegates the CIL compilation to its crucial component - the Just-In-

Time (JIT) compiler. The CLR JIT compiler is implemented as a DLL17 which

exports the getJit function. In SSCLI the fjitcompiler.cpp contains a getJit

function that returns a pointer to the ICorJitCompiler interface. The FJitCompiler

17ClrJit.dll for the framework version 4.0 and in MSCorJit.dll for earlier versions

19

CHAPTER 2. BACKGROUND

class is a concrete implementation of the ICorJitCompiler abstract class as defined

in fjit.h:

class FJitCompiler : public ICorJitCompiler

{

public:

/* the jitting function */

CorJitResult __stdcall compileMethod (

ICorJitInfo* comp, /* IN */

CORINFO_METHOD_INFO* info, /* IN */

unsigned flags, /* IN */

BYTE ** nativeEntry, /* OUT */

ULONG * nativeSizeOfCode /* OUT */

);

/* notification from VM to clear caches */

void __stdcall clearCache();

BOOL __stdcall isCacheCleanupRequired();

static BOOL Init();

static void Terminate();

private:

/* grab and remember the jitInterface helper addresses that we need at runtime */

BOOL GetJitHelpers(ICorJitInfo* jitInfo);

};

Two static functions with self-descriptive names Init and Terminate are both called

from DLL’s DllMain function: when the DLL is loaded into and unloaded from the

process memory. The most important function is the compileMethod function as it is

responsible for CIL to native code conversion. The opportunity to intercept and/or

call this function directly appears to be promising, and as a result, certain .NET

protectors and RCE utilities take that advantage.

The CLR JIT determines the bitness for native instructions based on the value of

Magic field in PE’s Optional Header and Flags field in the CLI Header (IMAGE_COR20_HEADER):

• 10B and COMIMAGE_FLAGS_32BITREQUIRED set - 32-bit only native instructions

• 10B and COMIMAGE_FLAGS_32BITREQUIRED not set - 32-bit or 64-bit native instruc-

tions depending on OS bitness

• 20B and COMIMAGE_FLAGS_32BITREQUIRED not set - 64-bit only native instructions

A brief summary:

• .NET aware OSes skip the native code CLR bootstrapper

• mscoree.dll starts the CLR and initiates execution

20

CHAPTER 2. BACKGROUND

• AppDomain is a .NET specific concept and handled by the CLR

• managed code is isolated into its own AppDomain

• an application can create additional AppDomains inside the same process while

code integrity and isolation between AppDomains is maintained

• an application can host the CLR via functionality exposed by mscoree.dll

• deferral compilation via helper code stubs

• .NET Framework RuntimeHelpers.PrepareMethod method can be used to force the

JIT compilation for a given method

• compileMethod function is responsible for CIL to native code conversion

• instance methods receive this pointer as the first argument

• for performance reasons, the JIT compiler uses Microsoft’s own fastcall calling

convention in native code generation

Further information on the SSCLI internals is provided by J. Pobar et al. [PNSS08].

Practical approach to metadata tables in-memory using debugger is described by M.

Hewardt [Hew10]. An in-depth description of application development for the .NET

Framework with respect to the core facilities and advanced topics, such as CLR Host-

ing, garbage collection etc., is presented by J. Richter [Ric10]. An overview of the PE

file format in the context of .NET and a complete description of the CIL is provided

by S. Lidin [Lid06]. Finally, the ECMA-335 [Mic13n] standard serves as an additional

reference for the aforementioned sources.

2.5 Execution security

As mentioned previously, the .NET Framework was designed to be a secure man-

aged code execution environment. For that purpose, several security mechanisms are

built into the CLR. When a managed application is first loaded its PE structure

and metadata integrity are verified. Next, the assembly’s evidence is evaluated to

grant the executing application’s requested permissions and the CLR decides if and

which permissions are granted in the context of the security policy. Specifically, these

permissions are granted and enforced by the code access security (CAS) whereas the

security policy is a set of configurable rules. The CAS also ensures that no code in

a call chain exceeds the granted permissions. To accomplish this task, the runtime

initiates a stack walk which checks that all assemblies participating in a call chain

have also been granted the same permissions as the assembly which initiated the

call. In Framework 4.0 the CAS has been vastly redesigned and implemented as the

21

CHAPTER 2. BACKGROUND

new Security Transparency model [Dai13] [Mic13k]. Finally, the JIT compiler per-

forms simultaneous code verification and compilation. The JIT verification ensures

that the code is safe, meaning that it does not circumvent the imposed security or

lead to unexpected behavior. Obviously, most of the security checks are skipped for

FullTrust assemblies. An extensive security model review of the .NET Framework

prior to version 4.0 is presented by N. J. Murison [Mur05].

The assembly evidence evaluation step allows the runtime to authenticate the

assembly and authorize the requested permissions. The .NET Framework was built

with proper application versioning and publisher verifiability in mind. This was

achieved in the form of digital signatures and strong naming that rely on public

key cryptography [Lip13]. The former is required to establish the identity of the

publisher, whereas the latter is used to uniquely identify the assembly itself. As a

side effect, strong naming provides protection from tampering, but it is not a security

feature. It does provide protection from tampering or spoofing only when the strong

name signature is present. When an assembly is deployed into the GAC its strong

name is verified. However, when a FullTrust .NET application is referencing another

assembly in the GAC, the target’s assembly strong name signature is not verified for

performance reasons. This is very dangerous, because all .NET applications reference

one or more system libraries and if a library is tampered all applications are affected.

Malicious software would take advantage of that by targeting the .NET Framework

directly.

To summarize, the strong name signature is intended for versioning only. More-

over, it can be easily disabled by, e.g. byte patching, as presented by A. Bertolotto

[Ber13]. As such, it cannot be considered a serious security enabler that many .NET

developers think it is. Rather, it is a valuable addition to other code protection

mechanisms.

22

Chapter 3

Practical part

.NET applications can be considered open source by default, because, as described

earlier, every application is compiled into CIL which is a high-level object oriented

language that operates on an evaluation stack, and the runtime heavily relies on

metadata. Thus, CIL can easily be decompiled to virtually any CLI language. Code

obfuscation is very popular in the .NET environment. In order to protect IP, commer-

cial versions of Microsoft Visual Studio are shipped with the Dotfuscator application,

which performs code obfuscation similar to several other .NET protectors available

on the market. From the runtime’s perspective everything is valid, since renaming

fields, types or methods does not alter the application behavior. However, from the

reverse engineer’s point of view, obfuscation is yet another barrier to overcome, as it

makes it difficult to understand the code. To make things even more complicated, the

obfuscation process can insert garbage CIL instructions, unused types, dummy fields,

alter control flow, utilize various tricks to shutdown the disassembler and/or decom-

piler, and encrypt string constants throughout the application. An analysis of .NET

application obfuscation is presented by L. M. Frydenberg [Fry06]. The main idea is

that some modifications can be partially or completely reversed. Each obfuscator has

its own signature, in other words, the type and characteristics of modifications it per-

forms. By distinguishing these signatures one can precisely target specific obfuscator’s

modifications and reverse them. Apparently, this process can be automated to some

extent, and the popular de4dot utility is a perfect example of a feature-rich .NET

deobfuscator which supports a wide range of various obfuscators and packers. Besides

obfuscation, some part of the .NET application functionality can be implemented as

unmanaged, i.e. native code DLL and called via P/Invoke (Platform Invoke) features

of the CLR. In addition, such DLL can be protected with native code protectors. The

23

CHAPTER 3. PRACTICAL PART

RCE of native code (especially with decent protection) is of an absolutely different

level of complexity compared to the RCE of .NET applications. Native code protec-

tors operate at the lowest level, hence opportunities are quite extensive. For example,

there are two types of breakpoints: software and hardware. In the x86 architecture, a

software breakpoint is int 3 - an instruction represented by CC opcode. On the other

hand, hardware breakpoints are, in essence, CPU debug registers. It is certain that

breakpoints exist for and are used by developers, however, a native code protector

can utilize the CPU’s debug registers to store values used for data decryption. As a

result, when a hardware breakpoint is set by a reverse engineer, it overwrites the pre-

vious value set by the protector and the entire decryption routine fails. In addition,

the protector can insert code that will detect software breakpoints or tampering by

calculating the checksum of the given code block in-memory. Even more interesting

anti-debugging tricks include intentional hardware faults that are intercepted by the

protector’s designated handlers. A fault must occur for successful execution and if

there is a person in the middle (a debugger) it intercepts the fault condition first, and if

not properly resolved and passed through, the respective routine fails. Stealing the

OEP code bytes, resolving the IAT at runtime, timed code execution and a lot of

other options are available in the native code.

The developer is responsible for the evaluation of all pros and cons whether to

implement certain parts of the application as native code DLL or not. Imposed limits,

complexity and feasibility must be taken into account. Some protectors, however, are

capable of extracting the source CIL, and converting it into native code, which is

then placed into a separate DLL, and inserting trampoline calls into that unmanaged

DLL in place of the original CIL code. The Salamander .NET protector completely

converts CIL into native code with the .NET metadata preserved. Nevertheless, it

is not a clean approach and can lead to problems. This protector is reviewed, and

the benefits and drawbacks of native compilation are evaluated by D. Pistelli [Pis13c]

[Pis13d].

Another popular protection involves a native code wrapper. Upon execution, it

decrypts the .NET assembly, starts up the .NET runtime and hands a decrypted byte

array to it. The runtime does the rest. While on disk, this schema provides decent

protection. However, the runtime expects the byte array to be a valid .NET assembly

so it is prone to a memory dump. The protector may alter the assembly after it has

been loaded, thus a plain dump will not be valid. In most cases, the correction of the

PE headers and the .NET metadata entries is sufficient. For example, an application

24

CHAPTER 3. PRACTICAL PART

protected by the Themida Winlicence can be dumped with the SND DotNet Dumper

1.0 and then corrected with the SND Universal Fixer 1.0, and finally processed by

the aforementioned de4dot. The correction step is mandatory, because the dumped

.NET assembly has a malformed structure and will fail to execute. Once corrected,

it executes normally. However, the file size is still huge, but processing it with the

de4dot dramatically reduces its size.

Furthermore, a reasonable question arises on how to render memory dumping use-

less. One option is to prevent the original CIL from being loaded and kept in memory

in the first place. Basically, protected routines can contain dummy code that will trig-

ger the execution of the original CIL. To achieve its goal, a protector must hook into

the CLR internals. The previous chapter described how a JIT-compiler compiles CIL

to native code via the compileMethod function. If the application controls the invo-

cation of this function, it can perform numerous things such as call tracing, code

injection, etc. When compileMethod function is hooked, the protector intercepts ev-

ery JIT compilation request. Based on provided data, the intercepting code decides

what to compile. Firstly, the custom routine will analyze what is requested, and

then, for example, decrypt the referenced method body and substitute stub CIL with

the decrypted original CIL. Then, the protector may choose to either call the original

compileMethod or execute a custom code that resembles the internal implementation of

the compileMethod. This protection schema description is applicable to the DNGuard

and similar protectors. Further information on SSCLI/.NET code injection is pre-

sented in an excellent article by D. Pistelli [Pis13b].

This chapter is aimed at the CIL level analysis and manipulation of .NET applica-

tions. It is divided into two parts. In Part 1 each subchapter describes a specific area

of interest from the RCE perspective of .NET. There is no single correct solution that

always works. Therefore, my intention was to describe some of the approaches, high-

lights, opportunities and analysis flow in a broader scope rather than plainly reviewing

each protector. Every subchapter contains background information, a practical part

and discussion. I decided not to compare the .NET protectors with each other. After

all, tutorials on how to crack the most popular .NET protectors are freely available

on the Internet. Nevertheless, I could not find any information on the InishTech SLP

code protector and licensing manager. In Part 2, I analyze the protector and finally

apply that knowledge to a real commercial software protected by the InishTech SLP.

All tools used are available on the web. Another important step is to obtain

the Windows symbol information from the Microsoft Symbol Server. Debug symbol

25

CHAPTER 3. PRACTICAL PART

information dramatically increases the code readability. Download instructions are

provided on the Microsoft website [Mic13m]. First, I downloaded the debug symbol to

my local cache folder c:\symbols. Addresses of loaded DLLs displayed in the debugger

may be different on other PCs. Next, the JIT compiles CIL into native code at

runtime, memory is allocated dynamically, and as a result the addresses of these code

chunks vary for every compilation.

3.1 Part 1: Common RCE techniques applicable

to .NET

I have developed a simple test .NET application1 called FakeRealApp that represents

an example of a popular Pay Licensed Closed-Source software license category, i.e. pay

to use and no sources. For the rest of the chapter, it is assumed that I have downloaded

this application from the Internet and obtained the registration information. Why

do I need to have a working key? The answer is to simplify the RCE process. Of

course, it may not always be required, but one way or another the registration data

can be utilized in some decryption routine which is not susceptible to bruteforcing or

cracking. In addition, a valid key allows shifting the attack vector. Take for example

a random application that uses asymmetric cryptography to check the registration

data with “am I registered?” state checks placed throughout the application. After

a successful decryption step, the application verifies with the home web service if

the current registration information matches the hash which was calculated during

initial registration. The hash can be calculated from the computer’s main HDD serial

number or CPUID data. This avoids the usage of the same key on multiple computers.

Thus, it is more convenient to crack the key uniqueness check. Now, a single key

becomes usable on an unlimited number of computers. A more sophisticated approach

would be to replace the original cryptography keys with your own keys and develop

a custom web service to check if the key is unique. From that point on, it is possible

to generate and distribute unique software keys just as its real authors do, but for

the patched version of the software.

Application analysis summary:

• 32-bit .NET 4.0 WinForms application. No protector used

• cannot perform any useful operations unless it is registered. UI button controls

1compiled as 32-bit application for research convenience

26

CHAPTER 3. PRACTICAL PART

Figure 3.1: An example of a pseudo-real commercial software

are disabled

• registration requires a valid username and password combination

• registration dialog notifies the user in both cases: whether registration was

successful or not. Notification is displayed with a regular message box

• if the registration was successful the UI is unlocked and the application becomes

fully functional

• once registered and restarted, the application starts in its registered state mean-

ing it has saved the registration information somewhere

3.1.1 Native code debugger

This subchapter is focused on the applicability of a native code debugger targeting a

.NET application.

Tools used:

• User mode Olly debugger (OllyDbg) is one of the most popular native code

debuggers. For its version 1.x users have developed a huge amount of various

plugins and scripts in response to vast RCE needs. Any decent native code

27

CHAPTER 3. PRACTICAL PART

protector contains special tricks to detect and even crash it. If certain issues

are mitigated by plugins other issues are resolved by patching the debugger

binary. Bundles that contain patched and configured Olly with plugins are

common. The most recent version is 2.01. Unfortunately, old plugins are not

compatible and 64-bit PE executables are not yet supported. This version is

capable of loading .NET executables. However it does not have the desired level

of .NET awareness. Software and documentation are presented by O. Yuschuk

[Yus13].

Starting from the initial configuration, the folder was opened with the Olly debug-

ger. Steps were the following: right click on ollydbg.exe, then select “Properties”. In

“Compatibility” tab the checkbox “Run this program as an administrator” must be

checked. Next, Olly was configured to use downloaded symbol files. In the program

options the “Debugging data” entry was selected and the path to local symbols folder

was specified. The “Allow access to Microsoft Symbol Server” check was set, followed

by clicking “OK” and restarting Olly.

In running Olly, RegMe.exe was selected via “File” - “Open” dialog. For new

executables a recurring analysis step takes longer to complete. However, its results

are cached for a faster start in the future. Olly stopped at a .NET entry point inside

mscoree.dll. The application execution was resumed by pressing F9. An exception

was encountered in kernelbase.dll and it was passed to the program by pressing

Shift + F9. For the second exception in the same kernelbase.dll the Shift + F9

key combination was pressed again, and the target application was loaded.

From the preliminary analysis we know that the application notifies the user

in both cases whether registration information is correct or not. The notification

is displayed via what appears to be a standard Windows message box defined in

user32.dll. This assumption was verified by going back to the Olly menu bar

“View” - “Executable modules”. In a newly opened window corresponding library

should be found, in my case like so:

Executable modules, item 33

Base = 75790000

Size = 00100000 (1048576.)

Entry = 757AB6ED

Name = USER32

Type =

File version = 6.1.7601.17514 (win7sp1_rtm.101119-1850)

Static links = ADVAPI32, GDI32, KERNEL32, ntdll

Path = C:\Windows\syswow64\USER32.dll

28

CHAPTER 3. PRACTICAL PART

After right clicking on the item and selecting “Show names”, the text “message-

box” without quotes was typed. This window has a quick search option which selects

the first matching item. After scrolling down a little

Names in USER32, item 2828

Address = 757FFD3F

Section = .text

Type = Export

Name = MessageBoxW

Comments = Ordinal = #2046

was encountered. In general, it is useful to set breakpoints to all exported unicode2

versions of message box functions to determine which one is used. The Unicode

version of any WinAPI function ends with a “W” character such as MessageBoxW.

For this example it was sufficient to set a breakpoint on only that function by selecting

it and pressing F2. The address column became red. In the target application the

“Register application” button was clicked and in the registration dialog a text was

input: “Test” as the user name and “Password” as the password (both without

quotes). After clicking on the “Register button” Olly stopped inside user32.dll:

Address Hex dump Command Comments

757FFD3F /$ 8BFF MOV EDI,EDI ; UNICODE "Invalid regist...

757FFD41 |. 55 PUSH EBP

757FFD42 |. 8BEC MOV EBP,ESP

757FFD44 |. 6A 00 PUSH 0 ; /LanguageID=LANG_NEUTRAL

757FFD46 |. FF75 14 PUSH DWORD PTR SS:[ARG.4] ; |Type => [ARG.4]

757FFD49 |. FF75 10 PUSH DWORD PTR SS:[ARG.3] ; |Caption => [ARG.3]

757FFD4C |. FF75 0C PUSH DWORD PTR SS:[ARG.2] ; |Text => [ARG.2]

757FFD4F |. FF75 08 PUSH DWORD PTR SS:[ARG.1] ; |hOwner => [ARG.1]

757FFD52 |. E8 A3FFFFFF CALL MessageBoxExW ; \USER32.MessageBoxExW

757FFD57 |. 5D POP EBP

757FFD58 \. C2 1000 RETN 10

Olly tried to be helpful and displayed useful information in the comments column.

The EDI register contains a pointer to a Unicode string. A pointer to the same string

was pushed onto the stack at 0x757FFD4C as a second argument to the MessageBoxExW

function call at 0x757FFD52. The column row at 0x757FFD3F was red because there

was a breakpoint. Clicking on that row and pressing F2 removed the breakpoint. Now

it was important to return to the code fragment of the test application that called

the message box routine. Ctrl + F9 was pressed which executed the code until the

function return, and when Olly stopped at the ret instruction, F8 was pressed. It was

2.NET conforms to the Unicode standard

29

CHAPTER 3. PRACTICAL PART

repeated until Olly’s title bar contained the [CPU - main thread] text. After the first

Ctrl + F9 a message box was displayed and it was necessary to close it by clicking

the “OK” button.

Address Hex dump Command

002F1310 8BCF MOV ECX,EDI

002F1312 8BD3 MOV EDX,EBX

002F1314 FF15 70741900 CALL DWORD PTR DS:[197470]

002F131A 85C0 TEST EAX,EAX

002F131C 75 24 JNE SHORT 002F1342

002F131E FF35 BC211103 PUSH DWORD PTR DS:[31121BC]

002F1324 6A 00 PUSH 0

002F1326 6A 10 PUSH 10

002F1328 6A 00 PUSH 0

002F132A 6A 00 PUSH 0

002F132C 6A 00 PUSH 0

002F132E 8B15 B8211103 MOV EDX,DWORD PTR DS:[31121B8]

002F1334 33C9 XOR ECX,ECX

002F1336 E8 2D576604 CALL 04956A68

002F133B 5B POP EBX

The EIP is at 0x002F133B. Previous instruction at 0x002F1336 is a call that trig-

gered the message box. A conditional jump at 0x002F131C was not taken because EAX

register was zero for some reason. The reason could be because the call at 0x002F1314

performs a username and password validation. In order to be sure, the 0x002F1314

row was selected, and the breakpoint was set by pressing F2 and execution was con-

tinued with F9. Back in the registration dialog, the “Register” button was clicked

again and Olly stopped at 0x002F1314. Note the two instructions above the call.

As described in the previous chapter, this is Microsoft’s own fastcall calling con-

vention, i.e. the first two arguments that can be accommodated into a register are

passed through ECX and EDX registers. Right clicking on the ECX register in Registers

window and selecting “Follow in Dump” allowed seeing the first string object bytes

in memory.

It was now evident that the call at 0x002F1314 received two arguments which

were strings with user input. Furthermore, there was no this pointer as the result of

a static function call. Pressing F7 allowed stepping into the call. I added comments

between code lines:

Address Hex dump Command

Standard prologue, setup new stack frame

002F13E8 55 PUSH EBP

002F13E9 8BEC MOV EBP,ESP

30

CHAPTER 3. PRACTICAL PART

Figure 3.2: ECX and EDX contain pointers to string objects with user data

Save caller registers

002F13EB 57 PUSH EDI

002F13EC 56 PUSH ESI

002F13ED 53 PUSH EBX

002F13EE 50 PUSH EAX

Zero EAX and set local variable value SS:[EBP-10] to zero

002F13EF 33C0 XOR EAX,EAX

002F13F1 8945 F0 MOV DWORD PTR SS:[EBP-10],EAX

Copy pointer to user password string to EDI register

002F13F4 8BFA MOV EDI,EDX

Check if username is not null, will jump otherwise

002F13F6 85C9 TEST ECX,ECX

002F13F8 74 0C JE SHORT 002F1406

Compare username string length to zero, store result in EAX

002F13FA 8379 04 00 CMP DWORD PTR DS:[ECX+4],0

002F13FE 0F94C0 SETE AL

002F1401 0FB6C0 MOVZX EAX,AL

002F1404 EB 05 JMP SHORT 002F140B

002F1406 B8 01000000 MOV EAX,1

31

CHAPTER 3. PRACTICAL PART

Check username comparison result. If zero - good, string has

characters, so no jump

002F140B 85C0 TEST EAX,EAX

002F140D 75 1F JNE SHORT 002F142E

The following block is identical to the previous blocks. Same checks

for the password string: if it is null or empty

002F140F 85FF TEST EDI,EDI

002F1411 74 0C JE SHORT 002F141F

002F1413 837F 04 00 CMP DWORD PTR DS:[EDI+4],0

002F1417 0F94C0 SETE AL

002F141A 0FB6C0 MOVZX EAX,AL

002F141D EB 05 JMP SHORT 002F1424

002F141F B8 01000000 MOV EAX,1

002F1424 85C0 TEST EAX,EAX

002F1426 75 06 JNE SHORT 002F142E

Next two instructions ensure that the username string must be

at least six characters long

002F1428 8379 04 06 CMP DWORD PTR DS:[ECX+4],6

002F142C 7D 08 JGE SHORT 002F1436

Zero EAX. Upon return the value of EAX is checked and if it is zero, the

application displays a message box saying "Invalid registration information"

002F142E 33C0 XOR EAX,EAX

Restore caller registers

002F1430 59 POP ECX

002F1431 5B POP EBX

002F1432 5E POP ESI

002F1433 5F POP EDI

Function epilogue

002F1434 5D POP EBP

002F1435 C3 RETN

A string in .NET is a special kind of citizen unlike a simple null terminated

character array. Every string is an object that encapsulates character array handling

and additional information about itself, such as length. Hence a string object does not

necessarily need to contain any characters. Such a string is considered to be an empty

string, but not null because the object exists. Figure 3.2 illustrates the string object

in memory. I highlighted the starting offset of the string length information bytes.

Previous assembly code listing checked that the username and password strings are

not null or empty. To succeed, the last check at 0x002F1428 requires the username

to contain at least six characters.

The jump at 0x002F142C was not taken because the current username string con-

32

CHAPTER 3. PRACTICAL PART

tained the text “Test” which is less than six characters. I had the previous breakpoint

removed and a new one set at 0x002F1436. F9 was pressed to continue the execution.

The application showed a message box about a failed registration, “OK” was clicked,

and the username was updated to “Test12” in order to match the six characters re-

quirement. Then, the “Register” button was clicked again and the breakpoint was

encountered:

Address Hex dump Command

Zero ESI. It is used as loop counter

002F1436 33F6 XOR ESI,ESI

Save username string length to EDX and another compiler sanity

check is username string is empty

002F1438 8B51 04 MOV EDX,DWORD PTR DS:[ECX+4]

002F143B 3BF2 CMP ESI,EDX

002F143D 73 44 JAE SHORT 002F1483

[ECX+8] - username + 8 bytes offset = actual string character array. Copy WORD

length content (two bytes as it Unicode) from (loop counter * 2 + character array)

This is an index for string character array. Basically following line copies

character at given index to EBX. Loop counter is multiplied by 2 because

it is Unicode and each character is represented with two bytes.

002F143F 0FB75C71 08 MOVZX EBX,WORD PTR DS:[ESI*2+ECX+8]

Copy current loop counter value into EAX.

002F1444 8BC6 MOV EAX,ESI

Increase EAX by 1.

002F1446 40 INC EAX

Compare increased loop counter by 1 with the length of the username string.

If less do not jump

002F1447 3BC2 CMP EAX,EDX

002F1449 73 38 JAE SHORT 002F1483

Next lines explain the need for increased loop counter. EAX contains

next character. Then ESI which is current loop counter increased by 2.

Pseudo code for previous MOVZX and following is:

EBX = username[i]

EAX = username[i + 1]

002F144B 0FB74441 08 MOVZX EAX,WORD PTR DS:[EAX*2+ECX+8]

002F1450 46 INC ESI

002F1451 46 INC ESI

Jump back to 0x002F143B if ESI is less than 6. So when loop counter

is 6 or above loop terminates.

002F1452 83FE 06 CMP ESI,6

002F1455 ^ 7C E4 JL SHORT 002F143B

33

CHAPTER 3. PRACTICAL PART

Loop has ended. Multiply current value in EBX by 0x3E8 and save result to EDX

002F1457 69D3 E8030000 IMUL EDX,EBX,3E8

Take current value in EAX and add it to EDX.

002F145D 03D0 ADD EDX,EAX

Save to local variable.

002F145F 8955 F0 MOV DWORD PTR SS:[EBP-10],EDX

At this point ECX contains pointer to username string. EDX has value of 0xBF9A.

Next call is unknown.

002F1462 E8 492A7D78 CALL 78AC3EB0

Result is pushed to stack. ECX contains local variable value of 0xBF9A, EDX is 0

and another unknown call.

002F1467 50 PUSH EAX

002F1468 8B4D F0 MOV ECX,DWORD PTR SS:[EBP-10]

002F146B 33D2 XOR EDX,EDX

002F146D E8 76E5180F CALL 0F47F9E8

At this point I speculated that the previous two calls were required to create

a new string and to set its value to 49050, a decimal of 0xBF9A.

Also, when the EIP was at 0x002F146D and memory was viewed at the EAX, it was

revealed that this new string object had a length of five and value of 49050.

Three parameters were passed to a static function call at 0x002F1478. The first

two parameters were newly created strings with values of 49050 and a user input

password string with the value of ’Password’. The third parameter was 5. The

entire routine was almost finished. The following call is the last one that can

affect the EAX value. I assumed that the following call was some sort of a string

comparison. Otherwise it is not clear why it would need a calculated value of

49050 and the user input password as parameters.

002F1472 8BD0 MOV EDX,EAX

002F1474 6A 05 PUSH 5

002F1476 8BCF MOV ECX,EDI

002F1478 E8 83FA7C78 CALL 78AC0F00

After stepping over the call at 0x002F1478 the EAX became zero. Clearly this

call performed some logic based on the calculated value of 49050 and the user

input of ’Password’. At this point it was obvious that the next logical

step was to replace the old ’Password’ text in the registration dialog with

the value 49050. By doing so this call compared 49050 to 49050 and set the

EAX to be not zero.

Restore caller registers

002F147D 59 POP ECX

002F147E 5B POP EBX

002F147F 5E POP ESI

002F1480 5F POP EDI

34

CHAPTER 3. PRACTICAL PART

Function epilogue

002F1481 5D POP EBP

002F1482 C3 RETN

The presented assembly code listing can be converted into the following C pseudo-

code:

int loopCounter;

int locVar1;

int locVar2;

int finalValue;

for(loopCounter = 0; loopCounter < 6; loopCounter += 2)

{

locVar1 = username[loopCounter];

locVar2 = username[loopCounter + 1];

}

finalValue = locVar2 + locVar1 * 0x3E8;

Apparently the use of the loop is useless because it overwrites the previous values.

It loops three times and only the last results are used. It can be safely optimized

into:

locVar1 = username[4]; // get 5th character

locVar2 = username[5]; // get 6th character

Therefore the final valid key is calculated as:

validKey = (int)username[5] + (int)username[4] * 1000; // 0x3E8 is 1000

The key generation and validation algorithms were now known, which means that

a key generator was now easily implementable. When the EIP was at 0x002F145F,

the EDX register had a value of a calculated valid key. The remaining code from

0x002F145F until return simply converted this value into the string and performed

a string comparison. If the strings match then the EAX is nonzero. With all the

breakpoints removed, the application continued its execution by pressing F9. Back in

the registration dialog, “49050” (without quotes) was input as the password. Success!

Though it was not the most convenient .NET application analysis (at the lowest

level), the goal was achieved. The assembly code of the validation routine was gen-

erated and allocated on the heap at runtime. The crucial requirement was to get it

as close as possible. I used the MessageBoxW WinAPI function as I observed its usage

during the initial analysis. Protection could have been silent, i.e. with no message

35

CHAPTER 3. PRACTICAL PART

Figure 3.3: Successful registration. Username is “Test12” and corresponding pass-
word is “49050”

box at all. In that case, it made sense to set a breakpoint on another WinAPI func-

tion that retrieves user input from textbox control, such as GetWindowTextW, because

this is a Windows Forms application and proceed from that point. However, it is not

always that simple. Every time the test application started, it silently checked the

“is registered” condition and adjusted UI accordingly. Also, the registration process

could have been different and always required an application restart for any user input

without instant validation. Surely, that input is saved somewhere, and the registry

and the file WinAPI functions could be good places to look from. The Sysinternals

Process Monitor can trace and log the file I/O and registry access activity, but even so

the entire RCE process becomes very complicated and time consuming. For achieving

the best results an analysis at the native code level must be addressed to dissection of

the native code portions utilized by certain protectors. For .NET application analysis

a debugger must have certain .NET-awareness and be capable of handling the .NET

application at the CIL + .NET metadata level.

3.1.2 Native code debugger with .NET-awareness

At this point our test application was registered and the registration information was

stored in the user.config file. In order to reset the registration this file was deleted

from one of the subdirectories in the c:\Users\<your profile name>\AppData\Local\RegMe

directory. A simple file search was sufficient.

The .NET application is all about the CIL and the metadata. Both of them are

36

CHAPTER 3. PRACTICAL PART

handled by the CLR. This subchapter presents another native code debugger but

with .NET-aware plugins. The goal was to find the registration check performed at

the application start.

Tools used:

• Microsoft WinDbg. Very powerful debugger for Windows capable of user and

kernel mode debugging in addition to debugging drivers and crash dumps. Ex-

tendable by plugins. Distributed as a part of the Debugging Tools for Windows

[Mic13d]

• Microsoft SOS.dll (Son Of Strike Debugging Extension). Installed with the

.NET Framework to assist the debugging of managed applications. The details

and a commands list are presented by Microsoft [Mic13l]

• SOSEX.dll is a third-party plugin developed to fulfill shortcomings of SOS.

Software and commands list are made available by S. Johnson [Joh13]

Our target application was 32-bit, so the 32-bit versions of WinDbg and SOSEX

were used. SOSEX DLL was copied to the WinDbg folder.

Initial configuration. The folder with 32-bit WinDbg3 was opened. Right clicking

the windbg.exe was followed by selecting “Properties”. In the “Compatibility” tab

the checkbox “Run this program as an administrator” was checked. Next, the debug

symbols were configured. I started WinDbg, then clicked on the “File” menu and

selected the “Symbol File Path”’. Input:

SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

checked “Reload”, clicked “OK” and then restarted WinDbg. In case the symbols

are not properly loaded refer to [Mic13m]. The next steps were “File” - “Open Exe-

cutable” and selecting RegMe.exe. The target was loaded and breakpoint triggered

in the ntdll!LdrpDoDebuggerBreak function.

CommandLine: C:_dotNETPlayground\RegMe.exe

WARNING: Whitespace at end of path element

Symbol search path is: SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

(475c.5fa4): Break instruction exception - code 80000003 (first chance)

eax=00000000 ebx=00000000 ecx=6c490000 edx=0012df08 esi=fffffffe edi=00000000

eip=778e0fab esp=003cf698 ebp=003cf6c4 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

ntdll!LdrpDoDebuggerBreak+0x2c:

778e0fab cc int 3

3on my PC it is c:\Program Files (x86)\Debugging Tools for Windows (x86)

37

CHAPTER 3. PRACTICAL PART

At this point the CLR was not loaded hence the helper extensions could not be

loaded. A one-time breakpoint on the CLR JIT load event was set and execution was

resumed:

sxe ld:clrjit

g

The breakpoint was hit:

(475c.5fa4): Unknown exception - code 04242420 (first chance)

ModLoad: 56400000 5646e000 C:\Windows\Microsoft.NET\Framework\v4.0.30319\clrjit.dll

eax=00000000 ebx=00000000 ecx=00000000 edx=00000000 esi=7efdd000 edi=003ce6b0

eip=7785fc42 esp=003ce584 ebp=003ce5d8 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

ntdll!NtMapViewOfSection+0x12:

7785fc42 83c404 add esp,4

Now it was possible to load SOS and SOSEX extensions:

.loadby sos clr

.load sosex

WinDbg loaded a correct 32-bit version of SOS from the .NET Framework instal-

lation directory. The SOSEX was loaded from the debugger’s local folder. Generally,

no output is displayed if extensions are loaded successfully. Next, the information

about the current location was viewed from the following stack trace:

0:000> !clrstack

OS Thread Id: 0x5fa4 (0)

Child SP IP Call Site

003cf048 7785fc42 [PrestubMethodFrame: 003cf048] RegMe.Program.Main()

003cf1f4 7785fc42 [GCFrame: 003cf1f4]

Here is the application entry point function - RegMe.Program.Main, which is not yet

compiled. Currently this is a stub that triggers the compilation as discussed in the

previous chapter. However, the method name was available and was used to find

method metadata information:

0:000> !name2ee *!RegMe.Program.Main

Module: 787d1000

Assembly: mscorlib.dll

Module: 00182e94

Assembly: RegMe.exe

Token: 0600000e

MethodDesc: 001837d8

Name: RegMe.Program.Main()

Not JITTED yet. Use !bpmd -md 001837d8 to break on run.

38

CHAPTER 3. PRACTICAL PART

As expected, this method is not JIT-compiled, yet fortunately it was possible to

set a deferred breakpoint. The execution was resumed with the g command and the

breakpoint was hit:

0:000> !bpmd -md 001837d8

MethodDesc = 001837d8

Adding pending breakpoints...

0:000> g

(475c.5fa4): CLR notification exception - code e0444143 (first chance)

JITTED RegMe!RegMe.Program.Main()

Setting breakpoint: bp 00270054 [RegMe.Program.Main()]

Breakpoint: JIT notification received for method RegMe.Program.Main() in AppDomain 00497a20.

Breakpoint 0 hit

EDIT: irrelevant lines of output were removed!

Display the disassembly of generated native code:

0:000> !u 00270054

Normal JIT generated code

RegMe.Program.Main()

Begin 00270050, size 2d

*** WARNING: Unable to verify checksum for RegMe.exe

*** ERROR: Module load completed but symbols could not be loaded for RegMe.exe

00270050 55 push ebp

00270051 8bec mov ebp,esp

00270053 56 push esi

>>> 00270054 e87366d004 call System_Windows_Forms_ni+0x1966cc (04f766cc)

(System.Windows.Forms.Application.EnableVisualStyles(),

mdToken: 06000610)

00270059 33c9 xor ecx,ecx

0027005b e82467d004 call System_Windows_Forms_ni+0x196784 (04f76784)

(System.Windows.Forms.Application.SetCompatibleTextRenderingDefault(Boolean),

mdToken: 0600061c)

00270060 b92c641800 mov ecx,18642Ch (MT: RegMe.MainForm)

00270065 e81cdb210f call clr!JIT_NewCrossContext (0f48db86)

0027006a 8bf0 mov esi,eax

0027006c 8bce mov ecx,esi

0027006e e8f5bff1ff call 0018c068 (RegMe.MainForm..ctor(), mdToken: 06000001)

00270073 8bce mov ecx,esi

00270075 e81224d104 call System_Windows_Forms_ni+0x1a248c (04f8248c)

(System.Windows.Forms.Application.Run(System.Windows.Forms.Form),

mdToken: 0600061a)

0027007a 5e pop esi

0027007b 5d pop ebp

0027007c c3 ret

This assembly is easier to read since the all calls are selfexplanatory, but what

about the CIL? !muf command outputs the CIL. By default it is in mixed mode with

39

CHAPTER 3. PRACTICAL PART

assembly code, but the -il switch limits the output only to the CIL. The same method

in CIL:

0:000> !muf -il 00270054

RegMe.Program.Main(): void

>>>>IL_0000: call System.Windows.Forms.Application::EnableVisualStyles

IL_0005: ldc.i4.0

IL_0006: call System.Windows.Forms.Application::SetCompatibleTextRenderingDefault

IL_000b: newobj RegMe.MainForm::.ctor()

IL_0010: call System.Windows.Forms.Application::Run

IL_0015: ret

Clean and compact code. Apparently this was a default WinForms startup code

and nothing related to the registration check was present. The code creates an in-

stance of RegMe.MainForm type which represents a Form. Consequently, it was the next

place to search. First of all, the RegMe.MainForm type constructor must be found and

its CIL displayed:

0:000> !name2ee RegMe RegMe.MainForm..ctor

Module: 00182e94

Assembly: RegMe.exe

Token: 06000001

MethodDesc: 00186358

Name: RegMe.MainForm..ctor()

Not JITTED yet. Use !bpmd -md 00186358 to break on run.

0:000> !muf 00186358

No native code. The method has not been JIT compiled.

RegMe.MainForm..ctor(): void

Source information not available.

IL_0000: ldarg.0

IL_0001: call System.Windows.Forms.Form::.ctor

IL_0006: ldarg.0

IL_0007: call RegMe.MainForm::InitializeComponent()

IL_000c: ldarg.0

IL_000d: newobj RegMe.Register::.ctor()

IL_0012: call RegMe.MainForm::set_RegForm(System.Windows.Forms.Form)

IL_0017: ldarg.0

IL_0018: call RegMe.MainForm::get_RegForm()

IL_001d: ldarg.0

IL_001e: callvirt System.Windows.Forms.Form::set_Owner

IL_0023: ret

Here, the RegMe.MainForm constructor calls the base System.Windows.Forms.Form con-

structor. Then the InitializeComponent method is called. The .NET WinForms

developers know that this method is automatically maintained by Visual Studio’s

Windows Forms Designer and responsible for creating child controls and assign-

ing properties. Next the RegMe.Register type instance is created and assigned to

40

CHAPTER 3. PRACTICAL PART

the RegMe.MainForm.RegForm instance property. Finally, the RegMe.MainForm object in-

stance is assigned to the Owner property of the RegMe.Register instance. In other

words, the RegMe.MainForm type constructor creates another Form instance of the

type RegMe.Register and assigns itself as the owner, i.e. parent - child form rela-

tionship. Probably, the child form is the registration dialog we had already seen.

There were no traces of the registration checks so far. The MSDN documentation for

the System.Windows.Forms.Form class has a list of events. The most interesting is the

Load event that occurs before the form is displayed for the first time. If there is a

callback it must be attached in the InitializeComponent method. The following CIL

of the InitializeComponent method was to be analyzed:

0:000> !name2ee RegMe RegMe.MainForm.InitializeComponent

Module: 00182e94

Assembly: RegMe.exe

Token: 0600000d

MethodDesc: 001863e4

Name: RegMe.MainForm.InitializeComponent()

Not JITTED yet. Use !bpmd -md 001863e4 to break on run.

0:000> !muf -il 001863e4

RegMe.MainForm.InitializeComponent(): void

EDIT: not relevant lines of output were removed!

IL_0488: ldarg.0

IL_0489: ldarg.0

IL_048a: ldftn RegMe.MainForm::MainForm_Load(object, System.EventArgs)

IL_0490: newobj System.EventHandler::.ctor

IL_0495: call System.Windows.Forms.Form::add_Load

EDIT: not relevant lines of output were removed!

RegMe.MainForm::MainForm Load method was subscribed to that event and its content

was viewed:

0:000> !name2ee RegMe RegMe.MainForm.MainForm_Load

Module: 00182e94

Assembly: RegMe.exe

Token: 06000003

MethodDesc: 00186370

Name: RegMe.MainForm.MainForm_Load(System.Object, System.EventArgs)

Not JITTED yet. Use !bpmd -md 00186370 to break on run.

0:000> !muf -il 00186370

RegMe.MainForm.MainForm_Load(object, System.EventArgs): void

IL_0000: ldarg.0 (sender)

IL_0001: call RegMe.Security::LoadAndCheckRegistrationInformation()

IL_0006: call RegMe.MainForm::set_IsRegistered(bool)

IL_000b: ldarg.0 (sender)

IL_000c: call RegMe.MainForm::SetupUI()

41

CHAPTER 3. PRACTICAL PART

IL_0011: ret

Finally, the registration check - RegMe.Security::LoadAndCheckRegistrationInformation

method call was found. The result was saved into a boolean property named IsRegistered.

Then the RegMe.MainForm::SetupUI method was called. I speculated that this method

was responsible for the registered/unregistered UI state adjustment based on the

IsRegistered property value. This assumption was confirmed by viewing the method’s

CIL:

0:000> !name2ee RegMe RegMe.MainForm.SetupUI

Module: 00182e94

Assembly: RegMe.exe

Token: 06000002

MethodDesc: 00186364

Name: RegMe.MainForm.SetupUI()

Not JITTED yet. Use !bpmd -md 00186364 to break on run.

0:000> !muf -il 00186364

RegMe.MainForm.SetupUI(): void

loc 0:bool

loc 1:bool

EDIT: content truncated!

IL_0033: ldarg.0

IL_0034: call RegMe.MainForm::get_IsRegistered()

IL_0039: brtrue.s IL_0042

IL_003b: ldstr "UNREGISTERED"

IL_0040: br.s IL_0047

IL_0042: ldstr "REGISTERED"

IL_0047: callvirt System.Windows.Forms.Control::set_Text

EDIT: content truncated!

Setting a breakpoint on the RegMe.MainForm.MainForm Load method after it was com-

piled and viewing assembly:

0:000> !bpmd RegMe RegMe.MainForm.MainForm_Load

Found 1 methods in module 00182e94...

MethodDesc = 00186370

Adding pending breakpoints...

0:000> g

(475c.5fa4): CLR notification exception - code e0444143 (first chance)

JITTED RegMe!RegMe.MainForm.MainForm_Load(System.Object, System.EventArgs)

Setting breakpoint: bp 00271016 [RegMe.MainForm.MainForm_Load(System.Object,

System.EventArgs)]

Breakpoint: JIT notification received for method RegMe.MainForm.MainForm_Load(

42

CHAPTER 3. PRACTICAL PART

System.Object, System.EventArgs) in AppDomain 00497a20.

Breakpoint 1 hit

0:000> !u 00271016

Normal JIT generated code

RegMe.MainForm.MainForm_Load(System.Object, System.EventArgs)

Begin 00271010, size 21

00271010 55 push ebp

00271011 8bec mov ebp,esp

00271013 56 push esi

00271014 8bf1 mov esi,ecx

>>> 00271016 ff1558741800 call dword ptr ds:[187458h] (RegMe.Security

.LoadAndCheckRegistrationInformation(), mdToken: 06000014)

0027101c 0fb6d0 movzx edx,al

0027101f 889660010000 mov byte ptr [esi+160h],dl

00271025 8bce mov ecx,esi

00271027 e834b1f1ff call 0018c160 (RegMe.MainForm.SetupUI(), mdToken: 06000002)

0027102c 5e pop esi

0027102d 5d pop ebp

0027102e c20400 ret 4

The return value of the static method call was copied from the al register to the

edx register and then stored in the esi+0x160, which is the aforementioned property.

Thus the esi register contained this pointer of the type RegMe.MainForm. The object

information at a specified address by the esi register was viewed via the !do esi

command and the statement was confirmed. My next step was to alter the method’s

behavior. The plan was to skip the registration check call completely and set the

al register to 1 as this call would normally do if the registration was valid. The

current call instruction is six bytes in length and modifications must remain within

this boundary:

0:000> a 00271016

mov al, 1

nop

nop

nop

nop

EDIT: press enter to exit edit mode

0:000> !u 00271016

Normal JIT generated code

RegMe.MainForm.MainForm_Load(System.Object, System.EventArgs)

Begin 00271010, size 21

00271010 55 push ebp

00271011 8bec mov ebp,esp

00271013 56 push esi

00271014 8bf1 mov esi,ecx

43

CHAPTER 3. PRACTICAL PART

>>> 00271016 b001 mov al,1

00271018 90 nop

00271019 90 nop

0027101a 90 nop

0027101b 90 nop

0027101c 0fb6d0 movzx edx,al

0027101f 889660010000 mov byte ptr [esi+160h],dl

00271025 8bce mov ecx,esi

00271027 e834b1f1ff call 0018c160 (RegMe.MainForm.SetupUI(), mdToken: 06000002)

0027102c 5e pop esi

0027102d 5d pop ebp

0027102e c20400 ret 4

If everything was correct and there were no additional checks, the application

should load as if it was registered. Execution was resumed by typing in the character

g and pressing the Enter key (or just F5). Success!

Figure 3.4: Patching at runtime. Application was tricked into believing it is registered

The entire analysis was rather easy as the SOS and SOSEX extensions were very

helpful. Moreover, I only used less than ten percent of all available commands.

Besides the commands used earlier, the following commands are especially valuable:

• !DumpDomain - displays details of all application AppDomains

• !DumpModule <module address> - prints information about .NET module. -mt com-

mand option lists all declared and referenced types by module

• !DumpMT <method table address> - prints method table details for specified ad-

dress. -md command option lists object methods

• !DumpMD <method descriptor address> - displays method descriptor information

• !DumpStackObjects - displays information about all managed objects on the cur-

rent stack

44

CHAPTER 3. PRACTICAL PART

• !IP2MD <code address> - very useful. Finds method descriptor by address

• !DumpVC <method table address> <address> - displays information about value type.

Reference type counterpart is !do <object address> command

• !DumpIL <method descriptor address or dynamic method address> - similar to !muf

-il <address> and outputs method’s CIL and CIL address

Refer to [Mic13l] for further details on commands. Debugging is essential when

a static analysis does not fulfill the requirements or is simply too complicated. De-

bugging allows seeing the object types and their values at runtime, analyzing the

control flow, performing modifications if needed, and more. Certain protectors create

types and operate with values at runtime. In that case a sole static analysis is not

efficient, if feasible at all. A combination of a static and dynamic analysis yields the

best results.

The conclusive step was to see the CIL of the method that performs the actual

username and password validation. However, I decided to leave it for the next sub-

chapter dedicated to static analysis.

There are several other debuggers worth mentioning:

• Microsoft MDbg is a .NET command-line debugger. Old source code is available

on Microsoft website

• Visual Studio debugger. It is possible to debug .NET applications without

source code with SOS plugin

• SmidgeonSoft PEBrowser debugger. Yet another powerful .NET-aware debug-

ger. Software and documentation are available on the Internet [Smi13]

• Dotnet IL Editor (DILE). Fantastic open source .NET debugger! In spite of

minor downsides ability to view the objects in memory as real .NET entities is

simply mind-blowing. I use it to analyze the InishTech SLP protector later in

this chapter. Details can be found on the web [Zso13]

3.1.3 Static analysis and application modification

This subchapter describes the CIL disassemblers and decompilers along with the CIL

assembler and how to use them to modify an existing .NET executable. The previous

subchapter identified how direct assembly code manipulation at runtime can trick an

application to assume it is registered. Unfortunately, all changes are lost when the

application is restarted, and the entire procedure must be repeated. This is not a

viable long term solution, as the performed modifications should persist.

45

CHAPTER 3. PRACTICAL PART

Tools used:

• ILDASM - CIL disassembler is part of Windows SDK

• ILASM - CIL assembler is installed with .NET Framework

• .NET Reflector - very popular CIL disassembler and decompiler. Various third-

party extensions are available

• Reflexil - .NET assembly editor plugin for Reflector and Telerik’s JustDecompile

• CFF Explorer - powerful PE editor with full .NET file format support

3.1.4 CIL round-tripping

The CIL round-tripping [Sta13] is a procedure where the .NET binary is first disas-

sembled to the CIL, after which the CIL is modified and finally compiled back into

the binary.

To begin with, the ILDASM was started, and RegMe.exe was selected via the

“File” - “Open” dialog. The analysis was no doubt facilitated by the GUI: all

the declared types were well-organized in a tree structure which was easy to nav-

igate. The startup registration check, as it was discovered, is performed in the

RegMe.MainForm.MainForm Load method. After locating it in the tree structure, I double

clicked it:

.method private hidebysig instance void

MainForm_Load(object sender, class [mscorlib]System.EventArgs e) cil managed

{

// Code size 18 (0x12)

.maxstack 8

IL_0000: ldarg.0

IL_0001: call bool RegMe.Security::LoadAndCheckRegistrationInformation()

IL_0006: call instance void RegMe.MainForm::set_IsRegistered(bool)

IL_000b: ldarg.0

IL_000c: call instance void RegMe.MainForm::SetupUI()

IL_0011: ret

} // end of method MainForm::MainForm_Load

This CIL snippet has already been encountered in the previous subchapter. There

definitely was a temptation to view the CIL of the RegMe.Security::LoadAndCheckRegist-

rationInformation method and find the actual validation routine given the simplicity

of the GUI navigation. It was not, however, the priority at that point. The next step

was to disassemble the entire application. I used the “Developer Command Prompt

for VS2012”4 which is available if a commercial version of Visual Studio is installed
4this is regular command prompt with configured environmental settings for various SDK and

VS tools

46

CHAPTER 3. PRACTICAL PART

from the path “Start menu” - “Microsoft Visual Studio 2012” - “Visual Studio Tools”.

It is a matter of convenience rather than a requirement.

ildasm RegMe.exe /out=RegMe.il

Several output files were created. After opening RegMe.il in a text editor, a

MainForm Load method inside the RegMe.MainForm class was found. Registration check

call was substituted by pushing the integer 1, which is treated as the boolean “true”

by the CIL, on the stack. The labels were also updated to the correct values based

on instruction length. Here is the new method body:

IL_0000: ldarg.0

IL_0001: ldc.i4.1

IL_0002: call instance void RegMe.MainForm::set_IsRegistered(bool)

IL_0007: ldarg.0

IL_0008: call instance void RegMe.MainForm::SetupUI()

IL_000d: ret

After saving the file, the application was assembled back:

ilasm /res=RegMe.res RegMe.il

Running the newly generated RegMe.exe was successful. The application started

in its registered state.

3.1.5 Byte-patching

Byte-patching is also applicable to the .NET executables. However, it is not a conve-

nient method to modify the .NET binary. It is best suited for a very small changes. If

the patching offset is not known, the sequence of bytes that represent the CIL opcodes

must be searched. In the previous subchapter MainForm Load’s CIL was presented us-

ing the !muf -il command. This time the !DumpIL <method descriptor> command was

used:

ilAddr = 012720e5

IL_0000: ldarg.0

IL_0001: call RegMe.Security::LoadAndCheckRegistrationInformation

IL_0006: call RegMe.MainForm::set_IsRegistered

IL_000b: ldarg.0

IL_000c: call RegMe.MainForm::SetupUI

IL_0011: ret

The output was familiar, but it included an important difference: the CIL address.

The total length of the instruction stream was IL 0011 + one byte ret opcode = 0x12

(decimal 18) bytes. Outputting the CIL opcodes resulted in:

47

CHAPTER 3. PRACTICAL PART

0:000> db 012720e5

012720e5 4a 02 28 14 00 00 06 28-09 00 00 06 02 28 02 00 J.(....(.....(..

012720f5 00 06 2a 3a 02 28 0a 00-00 06 02 6f 16 00 00 0a ..*:.(.....o....

The db command is used to display byte values at a specified memory location. The

x86 is a little-endian format architecture i.e.: the bytes that are stored on the disk

as 0x12345678 are loaded to memory with the last byte being the most significant:

0x78563412. In contrast to the other d* commands that group bytes, per-byte output

of the db command does not require a manual right to left byte swap. 0x012720e5 +

18 length are method bytes with CIL body opcodes starting at 0x012720e6:

4a 02 28 14 00 00 06 28 09 00 00 06 02 28 02 00 00 06 2a

RegMe.exe was opened in a hex editor and the desired byte sequence was searched.

It was encountered once, and then the actual registration function call represented by

5 bytes 2814000006 were replaced with the opcode byte 17, which is the CIL ldc.i4.1

instruction, and 4 additional zero bytes:

4A 02 17 00 00 00 00 28 09 00 00 06 02 28 02 00 00 06 2A

The CIL opcode 00 is nop (no operation) instruction5. The changes were saved and

the application started in its registered state.

Some CIL disassemblers have an option to display raw bytes next to the CIL

disassembly. The “View” - “Show bytes” check enables this option in ILDASM:

// Method begins at RVA 0x20e5

// Code size 18 (0x12)

.maxstack 8

IL_0000: /* 02 | */ ldarg.0

IL_0001: /* 28 | (06)000014 */ call bool RegMe.Security::LoadAnd

CheckRegistrationInformation()

IL_0006: /* 28 | (06)000009 */ call instance void RegMe.MainForm

::set_IsRegistered(bool)

IL_000b: /* 02 | */ ldarg.0

IL_000c: /* 28 | (06)000002 */ call instance void RegMe.MainForm

::SetupUI()

IL_0011: /* 2A | */ ret

Note the byte order after the “|” symbol: all bytes after the vertical bar must

be reversed in order for them to be searchable on the disk. ILDASM also provides a

valuable detail: a method start RVA where the raw CIL bytes are located. Another

notable detail is the correlation between the CIL location in memory and the method’s

RVA:

5similar to opcode 90 - a nop for x86 used earlier

48

CHAPTER 3. PRACTICAL PART

ilAddr = 0x012720e5

RVA = 0x000020e5

To find the method CIL bytes the RVA must be translated to the file offset. The

RVA belongs to the range of a concrete PE section which must be found first. RegMe

is a regular .NET application. According to the .NET file structure described in the

previous chapter, the managed code is contained inside the .text PE section. The

dumpbin utility or any other PE viewer can be used to view section details. I used the

CFF Explorer to view the .text section properties:

• Virtual size - 0x00002D04

• Virtual address - 0x00002000

• Raw size - 0x00002E00

• Raw address - 0x00000200

Any PE section has these characteristics. Virtual ... are used by the OS PE loader

when a section is mapped to memory, whereas the Raw ... are applicable to the PE

file on a disk. In order to convert the RVA to a file offset:

Method RVA - Virtual address + Raw address

0x000020e5 - 0x00002000 + 0x00000200 = 0x2E5

The bytes at the file offset 0x2E66 match their counterpart displayed by ILDASM.

The CFF Explorer has a built-in “Address Converter” that eliminates the necessity

for manual address calculations. In addition, it has a hex editor and a built-in dis-

assembler. Finally, the MainForm Load method can be easily found in the “.NET

Directory”, as illustrated by Figure 3.5.

3.1.6 Patching with decompiler and Mono.Cecil

Due to its convenience, this is the most anticipated .NET assembly modification ap-

proach amongst everything presented so far. There were several decompilers available:

• .NET Reflector - the most popular one and I suspect it is the first of its kind.

It was freeware even when it was acquired by RedGate but later new owner

ceased the free version what in turn has motivated the community to develop

freeware alternatives. It is capable to export .NET assembly as a VS source

code project. Its main outstanding feature compared to the competitors is

60x2E5 + 1 byte to the actual CIL body

49

CHAPTER 3. PRACTICAL PART

Figure 3.5: CFFExplorer navigation and modification capabilities

the ability to step into any third-party .NET assembly during debugging in

VS. Target .NET assembly is automatically decompiled thus no source code is

required

• ILSpy - popular, free and open source

• Telerik JustDecompile - Telerik is mainly famous for its .NET component li-

braries, however, recently they have developed their own freeware decompiler.

Its features are similar to the .NET Reflector

• JetBrains dotPeek - freeware

• DevExtras .NET CodeReflect - freeware

• Spices .Net Decompiler - commercial

• Assembly Analyzer - freeware and open source. Almost a .NET Reflector clone

The .NET Reflector was selected. The Reflexil plugin for the .NET Reflector

was a decent candidate for the .NET assembly editor’s role. In general, most of the

editors utilize Mono.Cecil for performing the modifications. Mono.Cecil is a library

developed by Jb Evain for generating and analyzing .NET binaries. It is used in many

50

CHAPTER 3. PRACTICAL PART

tools such as the aforementioned Reflexil plugin, de4dot7, Mono Debugger etc.

In the beginning of this chapter I mentioned that .NET applications were consid-

ered to be open source and easily decompilable, but everything presented up to this

point contradicts that statement. It is time to “unleash” the decompiler!8. First, the

.NET Reflector was started, then, via “File” - “Open Assembly”, the RegMe.exe was

selected. I selected C# in the language toolbar dropdown, navigated to the RegMe

namespace, then the MainForm class, and selected the MainForm Load method. The

following C# code was displayed:

private void MainForm_Load(object sender, EventArgs e)

{

this.IsRegistered = Security.LoadAndCheckRegistrationInformation();

this.SetupUI();

}

Clicking on LoadAndCheckRegistrationInformation revealed the method’s source code:

public static bool LoadAndCheckRegistrationInformation()

{

try

{

string userName = Encoding.UTF8.GetString(Convert.FromBase64String(

Settings.Default.UserName));

string password = Encoding.UTF8.GetString(Convert.FromBase64String(

Settings.Default.Password));

return CheckRegInformation(userName, password);

}

catch

{

return false;

}

}

In this case, both the username and password were stored in the application set-

tings, in the XML configuration file. Moreover, strings are Base64 encoded. Finally,

a click on the CheckRegInformation revealed the long-awaited registration validation

method:

public static bool CheckRegInformation(string userName, string password)

{

if ((string.IsNullOrEmpty(userName) || string.IsNullOrEmpty(password)) ||

(userName.Length < 6))

{

7up to version 2.0.0
8greetings from “Pirates of the Caribbean” movie :)

51

CHAPTER 3. PRACTICAL PART

return false;

}

int num = 0;

int num2 = 0;

for (int i = 0; i < 6; i += 2)

{

num = userName[i];

num2 = userName[i + 1];

}

int num4 = (num * 0x3e8) + num2;

return string.Equals(password, num4.ToString(), StringComparison.OrdinalIgnoreCase);

}

Compare this output to C pseudo-code discovered in the subchapter 3.1.1. The

goal is the same, but was achieved by two distinctive ways: several clicks and perfect

readability versus time consuming debugging and complex analysis of assembly code

chunks. Certainly manual decompilation of the CIL would have been easier, however,

my intention was to present the contrast between the RCE benefits of easily decom-

pilable managed applications and the absence of such benefits for their unmanaged

counterparts.

Next, a stand-alone application can be developed for key generation purposes or

an existing application can serve that purpose. I decided to proceed with the latter.

I loaded the editor plugin via “Tools” - “Reflexil v1.6”. The plugin UI displayed

CIL instructions on a per row basis. The context menu revealed two editing options:

editing per CIL instruction or entirely replacing the current type’s CIL with C# or

VisualBasic code. After editing the CIL per instruction, the final result was:

71 nop

72 ldloca.s -> (3) (System.Int32)

74 call System.String System.Int32::ToString()

79 call System.Windows.Forms.DialogResult System.Windows.Forms.MessageBox::Show(

System.String)

84 pop

85 ldc.i4.0

86 ret

The following steps were performed: the .NET assembly root tree item (“RegMe

(1.0.0.0)” - “Reflexil v1.6” - “Save as”) was right clicked and the patched binary

was saved. The RegMe.Patched.exe was ran, and the “Register application” button

was clicked. In the registration dialog, “Test12” was entered as the username and

the password was left to be whatever. The introduced modifications had converted

this application into a key generator. When the “Register” button was clicked, the

correct password was calculated and displayed in a message box as illustrated by

52

CHAPTER 3. PRACTICAL PART

Figure 3.6. Furthermore, the method always returned the boolean “false”, meaning

that the application can never be registered.

Figure 3.6: The original application converted into a key generator

With some additional minor changes the application can be converted into a better

looking key generator, but this task was left to the reader, as, after all, the primary

goal was achieved.

A reasonable question: what was the necessity to describe several complicated

solutions when the decompiler can instantly provide easily readable C# source code

without any troubles? Because it cannot be expected to always do so. The begin-

ning of this chapter introduced native code wrapper protection, CIL code injection

based protection and obfuscators. If some counter-measures diminish the value of

the decompiler, others can shut it down completely. In addition, de4dot may not

have the support for the encountered obfuscator or ILDASM may reject to open the

binary because the SuppressIldasmAttribute attribute is set9. In fact, the .NET Re-

flector ignores that attribute yet it may not be able to disassemble due to some error

and only ILSpy may be capable to display more or less accurate CIL, whereas the

decompilation will fail. If the CIL round-tripping is not possible or reasonable, then

the Mono.Cecil library is a good candidate. However, despite Mono.Cecil’s powerful

features it did not satisfy the needs of the de4dot utility and was substituted with a

homebrew dnlib library which better suited the task of processing heavily obfuscated

.NET assemblies. The ability to “handle” .NET binaries only when the decompiler

is capable to output high-level language source code is not an RCE skill. To summa-

9easy to overcome

53

CHAPTER 3. PRACTICAL PART

rize, every task has its own set of applicable tools and the desired work principle is

to achieve better results with less effort.

3.2 Part 2: Analysis of the InishTech SLP software

protection

This part is dedicated to the InishTech SLP10 analysis. At first, the intention was to

write a detailed analysis. After all, the thesis is about the .NET RCE, but an instant

second thought prevented this from happening. In order to not endanger thousands

of protected applications by providing sensitive details, the analysis was performed

in a scope sufficient for removing the protector in the simplest case. This limitation

will definitely not affect moderately skilled reverse engineers, but will raise the entry

level for their beginner-level counterparts. Finally, the plan was to not modify the

protector itself to skip certain validations, but rather attempt to recover the CIL and

untie the application from the protector.

Tools used:

• WinDbg with SOS and SOSEX

• .NET Reflector with Reflexil plugin

• Dotnet IL Editor (DILE) debugger

• ANTS Performance Profiler - .NET profiler

3.2.1 Initial analysis

The vendor’s product overview brochure is an excellent source of information about

the protector:

“Software Potential allows the ISV to create and package editions on demand, ac-

cording to the requirements and the opportunities they see in the marketplace. Editions

can have distinct feature sets and can be subject to particular time and usage-based

limitations.

Each of the three traditional methods for protecting code - obfuscation, encryption,

and code splitting - has strengths and weaknesses, and the technique used by the Soft-

ware Potential service takes the best from each method to provide a more effective,

convenient software-only solution. The fundamental strategy used by Software Poten-

10previously named Microsoft SLPS which was acquired from Microsoft in 2009

54

CHAPTER 3. PRACTICAL PART

tial is to take selected code, pass it through a one-way transformation that leaves the

original logic effectively encrypted and obfuscated, and then package it direct execution

on the CLR.

Key to the Software Potential code protection strategy is code transformation. Us-

ing the Software Potential Code Protector application compiled MSIL is transformed

into Secure Execution Engine Language (SEEL) which can no longer be run directly

by the CLR or reverse engineered by decompilation tools, and then encrypted so that

the resulting SEEL “byte code” cannot be directly inspected. Decompilation of Mi-

crosoft .NET code is possible because MSIL is a fixed and widely known specification.

The SEEL command set, on the other hand, is unique - changing with each unique

Software Potential Permutation - and requires a unique Agent to execute it. A com-

bination of the SEEL and the Agent comprises a vendor Permutation. If SEEL was

simply another “byte code” made up of instructions to be executed, a very skilled

hacker could, theoretically, spend the time to reverse engineer the entire command set

and use this knowledge to build a decompiler; however, because the SEEL is actually

encrypted, there is a huge barrier to even that already complex task. Further, because

each Agent is different, any decompiler would only be effective against a specific Agent

associated with that specific permutation. Different applications from the same vendor

could use different permutations to ensure that any compromise of security is limited

to a single application. This layered approach makes Software Potential’s code trans-

formation a premier code protection technology. This ability to create an encrypted,

unique, and transformed version of your code is a powerful protection against reverse

engineering, and simple to achieve. After building your .NET application, use Code

Protector to identify the methods you want to protect. Because there is a performance

cost to decrypting and executing protected code, it is best to transform only those

methods that contain sensitive intellectual property, information about your enter-

prise infrastructure, passwords, etc. After protection is complete, the protected code,

when viewed in a .NET decompiler, shows only a call into the SVM with a string of

random characters. When your application is executed, the CLR handles the original

unprotected MSIL, but the SVM executes the protected SEEL. The Agent is a series

of DLLs that link directly into your .NET application and works as an integral part

of your application logic, thus making it more difficult to bypass licensing routines.”

[Ini13]

And a short summary by the very same brochure [Ini13]:

• the logic of protected methods is removed and replaced with a call into the

55

CHAPTER 3. PRACTICAL PART

SVM, so traditional .NET decompilers cannot reverse engineer protected code

• the SEEL is encrypted to make reverse engineering the new “byte code” even

more difficult

• because each Permutation is unique, any reverse engineering that was accom-

plished would be limited to that single Permutation.

• the original code never exists fully in memory

• because licensing is based on the process of executing protected functions, the

SVM is an integral part of enforcing your licenses

Another application11 was developed for the initial analysis illustrated by Figure

3.7

Figure 3.7: Helper application

The application’s output is displayed in the large text box control in the middle.

The six buttons on the left represent the protected functionality. The buttons in the

first column are selfexplanatory:

private void btnMessageBox_Click(object sender, EventArgs e)

{

MessageBox.Show("Hello world!");

}

11also compiled as .NET 4.0 32-bit application

56

CHAPTER 3. PRACTICAL PART

private void btnException_Click(object sender, EventArgs e)

{

throw new ApplicationException("ApplicationException");

}

private void btnBreakpoint_Click(object sender, EventArgs e)

{

Debugger.Break();

}

The second column counterparts were otherwise identical, except for the added

stack tracing for providing method execution details:

private void btnSTMessageBox_Click(object sender, EventArgs e)

{

StackTrace stackTrace = new StackTrace();

StackFrame[] frames = stackTrace.GetFrames();

for (int i = 0; i < stackTrace.FrameCount; i++)

{

Log(string.Format("\t--- StackFrame #: {0} - {1} ---", i, DateTime.Now.ToString()));

StackFrame sf = stackTrace.GetFrame(i);

CallingMethod tmp = new CallingMethod(sf);

ShowCallingMethod(tmp);

}

MessageBox.Show("Hello world!");

}

EDIT: other methods follow here

The trial version the InishTech SLP was downloaded, the Code Protector was

started, the trial permutation file was loaded, and the compiled WinForms.exe binary

was opened. After navigating through the types tree, selecting the six aforementioned

event handlers, and clicking on the “Protect” button, the Protector output several

files into a new folder Release.Protected:

• WinForms.exe

• Microsoft.Licensing.Permutation 5538c 2.0.dll - 909,5KB

• Microsoft.Licensing.Runtime2.0.dll - 88KB

• Microsoft.Licensing.Utils2.0.dll - 120KB

Opening the WinForms.exe in the .NET Reflector and viewing protected methods

showed that they all had the same body, except for the GUID value parameter:

57

CHAPTER 3. PRACTICAL PART

Figure 3.8: Code Protector application ready to process WinForms.exe

[MethodImpl(MethodImplOptions.NoInlining)]

private void btnSTMessageBox_Click(object sender, EventArgs e)

{

object[] args = new object[] { sender, e };

SLMRuntime.ExecuteMethod(this, "D5A898FC66D2409CADD0D2C5896F2C8B", "", args, null, null);

}

The next step was to click on the ExecuteMethod method, and then on the Internal-

ExecuteMethod method:

public static object InternalExecuteMethod(Assembly declaringAssembly, string SVMMethodId,

IExecutionEngineParams paramsReader)

{

if (declaringAssembly == null)

{

throw new ArgumentNullException("declaringAssembly");

}

using (ISLMRuntime runtime = SLMRuntimeFactory.CachedForProtectedAssembly(

declaringAssembly))

{

return runtime.ExecutionEngine.ExecuteMethod(declaringAssembly,

SVMMethodId, paramsReader);

}

}

The .NET Reflector automatically navigated to the .NET assembly that contained

the declaring type, the Microsoft.Licensing.Runtime2.0. A quick overview revealed

the DotfuscatorAttribute class, an indicator of the Dotfuscator obfuscator. Many type

58

CHAPTER 3. PRACTICAL PART

names began with Microsoft1LicensingRuntime210 and were indeed obfuscated. Type

names containing words “engine”, “runtime”, “invocation context”, “activation” and

“status” hinted that this software could be a complicated execution engine based

pipeline. Clicking on the ISLMRuntime allowed to view the interface type:

[Guid("FBAEF771-0D4E-42d4-9D63-627D7CCD7F02"), ComVisible(true)]

public interface ISLMRuntime : IDisposable

{

ISLMLicenseStores LicenseStores { get; }

ISLMLicenses Licenses { get; }

ISLMStatus Status { get; }

ISLMActivation Activation { get; }

[ComVisible(false)]

IExecutionEngine ExecutionEngine { get; }

[ComVisible(false)]

ISLMCustomizations Customizations { get; }

string VendorName { get; }

ILicenseSession Session { get; }

bool IsSessionOpen { get; }

void OpenSession(string product, string version);

[Obsolete("as of 3.1.1919, invalidateHandler will no longer be called")]

void OpenSession(string product, string version, LicenseSessionEvent invalidateHandler);

void CloseSession();

}

The previously encountered SLMRuntime class implemented the interface. The class

constructor contained obfuscated code and some initialization:

this.B = A_2 ? A(A_1, A_0) : new Microsoft1Licensing1Runtime210G(A_1, A_0);

The Microsoft1Licensing1Runtime210G type constructor created another type, Microsoft1-

Licensing1Runtime210R, which called the Microsoft1Licensing1Runtime210H.A method that

read “ SLM HD.DAT” embedded resource bytes and passed it to another type’s con-

structor etc. The IExecutionEngine was another interesting interface:

[ComVisible(false)]

public interface IExecutionEngine

{

// Methods

object ExecuteMethod(Assembly methodAssembly, string svmMethodId,

IExecutionEngineParams parameters);

}

The .NET Reflector has a great feature to discover type dependencies and their

usage. The next steps were to right click the IExecutionEngine in the tree and to select

“Analyse”. After that, “Used By” was expanded and the following was clicked:

59

CHAPTER 3. PRACTICAL PART

Microsoft.Licensing.SLMRuntime.get_ExecutionEngine() : IExecutionEngine

A menu was opened with a right click and “Go To Member” was selected:

public IExecutionEngine get_ExecutionEngine()

{

return this.B().ExecutionEngine;

}

The method B was clicked:

private ISLMRuntimeImpl B()

{

return this.B.A();

}

Next, the ISLMRuntimeImpl was clicked. Some interface property fields were identical

to the ISLMRuntime interface property fields. Supposedly, Impl meant implementation.

Several property fields and methods returned this type, and a particularly interesting

method was contained in the Microsoft1LicensingRuntime210R type:

private static ISLMRuntimeImpl B(Assembly A_0)

{

Type type;

ISLMRuntimeImpl impl;

try

{

type = A(A_0);

}

catch (Exception exception)

{

Log.Write(exception);

throw new Microsoft1Licensing1Runtime210U("Failed to find implementation type",

exception);

}

try

{

impl = (ISLMRuntimeImpl) Activator.CreateInstance(type);

}

catch (Exception exception2)

{

Log.Write(exception2);

throw new Microsoft1Licensing1Runtime210U("Failed to create implementation class",

exception2);

}

return impl;

}

In the context of exception handling texts and Activator.CreateInstance I suspected

that the A(A 0) method searched and returned a type that implemented the ISLMRuntimeImpl

60

CHAPTER 3. PRACTICAL PART

interface. The method examination confirmed this assumption. In addition, the B

method itself was called by the same type’s C method which attempted to find a

permutation assembly, then called B and finally performed some initialization.

The next logical step was to open the Microsoft.Licensing.Permutation 5538c 2.0

permutation assembly in the .NET Reflector and the find type that implemented

the ISLMRuntimeImpl. A jungle of over 350 obfuscated and tightly coupled types was

found. After proceeding further with the search of SLMRuntimeRedirect, the type

was found. The type’s static constructor created a couple of type instances and

initialized the ISLMRuntimeImpl via the newly assigned A property field of the type

Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2ft. What’s more, several meth-

ods were responsible for protected method execution via the ((IExecutionEngine)

A).ExecuteMethod. Thus, the property A’s type should be reviewed. Microsoft Licen-

sing Permutation 5538c 2 0 3 2 1941 2ft type:

internal class Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft :

ISLMRuntimeImpl,

IExecutionEngine,

DistributorHooks

From what has been observed, there was no doubt that this was a predefined

execution pipeline with substitutable components. A protected application required

three additional .NET assemblies to execute. I suspected that two of these were com-

mon for all protected applications. Generic inheritance based runtime resolved the

actual implementation from a permutation .NET assembly. Permutation was adver-

tised to be unique, thus generic runtime simply executed a unique implementation of

its core functionality including the execution engine. Consider a real world analogue:

a car whose engine is easily replaceable. Internal engine implementation is unique

for each instance, but the car itself remains the same. But here is the important

question: what makes each engine unique? The research and implementation of a

fully featured engine is known to be expensive and the engine must meet the car’s

requirements. For that reason is it possible that the engine itself is not so unique but

rather only the fuel supply system is different? In the context of this protector, it was

possible that the runtime that included execution was the same for all protections,

but the data it operated on was unique for a concrete execution engine. As a result,

the entire protection schema could be driven by unique data processed by a generic

pipeline. This, however, was just an assumption.

Performing a quick analysis was required not only for the initial overview but also

to ensure that the protector operated as advertised. Some of the protectors available

61

CHAPTER 3. PRACTICAL PART

on the market are known to never fulfill the promised level of protection. Their

product marketing PDF had more lines of text than the actual protection code.

Protected code is concealed and handled by protector’s runtime, but eventually

it must be executable. There must be one or more endpoints for that purpose that

delegate further execution to the CLR. Most probably, the transition at the endpoint

involves a .NET reflection mechanism. The next step was to analyze the stack trace

from the protected application. By clicking the “Stacktrace: MessageBox” button, a

message box was displayed along with 37 traced methods. The detailed trace can be

found in Appendix B. The essential part was:

--- StackFrame #: 6 - 11/7/2013 4:40:45 PM ---

System.Activator.CreateInstance

--- StackFrame #: 7 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS.A

--- StackFrame #: 8 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BZ.C

--- StackFrame #: 9 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi.I

--- StackFrame #: 10 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2F.A

--- StackFrame #: 11 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v.E

--- StackFrame #: 12 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

--- StackFrame #: 13 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

--- StackFrame #: 14 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

--- StackFrame #: 15 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

--- StackFrame #: 16 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A

--- StackFrame #: 17 - 11/7/2013 4:40:45 PM ---

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A

--- StackFrame #: 18 - 11/7/2013 4:40:45 PM ---

Microsoft.Licensing.SLMRuntime.InternalExecuteMethod

--- StackFrame #: 19 - 11/7/2013 4:40:45 PM ---

Microsoft.Licensing.SLMRuntime.ExecuteMethod

--- StackFrame #: 20 - 11/7/2013 4:40:45 PM ---

WinForms.Form1.btnSTMessageBox_Click

The trace must be analyzed from the bottom up. The aforementioned Microsoft -

Licensing Permutation 5538c 2 0 3 2 1941 2ft type was indeed a crucial entity. The but-

ton click event handler transitioned to SLMRuntime assembly, which transitioned to

a permutation assembly. The endpoint was:

62

CHAPTER 3. PRACTICAL PART

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS.A

Clicking on the “Stacktrace: Exception” button also produced 37 traced methods

and the same endpoint. With the “Stacktrace: Breakpoint” results were eventually

the same. The suspected endpoint method was viewed:

protected override Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rN A(

MethodBase A_0,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi

.Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BD[] A_1)

{

EDIT: not relevant lines were removed!

object[] args = Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE.

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bc.A(A_1);

return new Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rN(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rw.B(Activator.CreateInstance(

reflectedType, bindingAttr, new Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE.

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bc.

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BV(A_0), args, null)),

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rN.A.B);

}

The method’s body did not resemble an expected endpoint code. According to the

MSDN, the .NET Framework Activator.CreateInstance method “creates an instance of

the specified type using the constructor that best matches the specified parameters”.

However, if the type instance was created here, then where was it used and where

were the parameters passed? In Part 1 a breakpoint on the MessageBoxW WinAPI

function was used as a trampoline to the caller code. A similar approach, but with

a breakpoint set on a managed message box method appeared to be sufficient. After

starting WinDbg, loading WinForms.exe and setting up the environment as described

in WinDbg subchapter, the breakpoint was set:

!bpmd System.Windows.Forms.dll System.Windows.Forms.MessageBox.Show

The “MessageBox” button was clicked and the breakpoint was hit. The call stack

was the following:

0:000> !clrstack

OS Thread Id: 0x8274 (0)

Child SP IP Call Site

0037e298 0509f649 System.Windows.Forms.MessageBox.Show(System.String)

0037e5b4 0f472672 [DebuggerU2MCatchHandlerFrame: 0037e5b4]

0037e37c 0f472672 [HelperMethodFrame_PROTECTOBJ: 0037e37c] System.RuntimeMethodHandle.

63

CHAPTER 3. PRACTICAL PART

InvokeMethod(System.Object, System.Object[], System.Signature, Boolean)

0037e650 78aa376d System.Reflection.RuntimeMethodInfo.UnsafeInvokeInternal(

System.Object, System.Object[], System.Object[])

0037e674 78ad8fcd System.Reflection.RuntimeMethodInfo.Invoke(System.Object,

System.Reflection.BindingFlags,

System.Reflection.Binder,

System.Object[],

System.Globalization.CultureInfo)

0037e6a8 78a9b080 System.Reflection.MethodBase.Invoke(System.Object, System.Object[])

0037e6b4 01334c8f Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bn.A(System.Object,

System.Object[])

EDIT: remaining important, but currently not relevant stack trace was removed!

As anticipated, a .NET reflection was used. MSDN’s description of the Invoke

method said it “invokes the method or constructor represented by the current in-

stance, using the specified parameters”. From this stack trace it was evident that the

MessageBox.Show was called via the Invoke. And the call originated from:

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bn.A

This was a decent endpoint candidate. The method was further found in the .NET

Reflector:

protected object A(object A_0, object[] A_1)

{

Action<object> action2 = null;

if (base.B.D() == null)

{

throw new Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rB(

"Null method {40E6ABCC-566F-4b9b-A23E-23DF00B28272}");

}

if (!Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BR.A(base.B.D(), A_0))

{

return base.B.D().Invoke(A_0, A_1);

}

if (action2 == null)

{

action2 = new Action<object>(this.A);

}

Action<object> action = action2;

return Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BR.A(base.B.D(), action, A_1);

}

Important observation: Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2Bn type, sim-

ilarly to Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2BS, was a nested type of

64

CHAPTER 3. PRACTICAL PART

the Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2BE type. Thus, the latter pre-

sumably had a “create and execute” role. Given that this code was reusable, the type

and method to call must be substitutable:

base.B.D().Invoke(A_0, A_1);

base.B was of the type Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2Bs. The

method D internally returned this.B class field value of the expected MethodBase type.

The latter B was assigned in the constructor. The type Microsoft Licensing Permuta-

tion 5538c 2 0 3 2 1941 2Bs was just a wrapper. The next step was to find the instantia-

tions of that wrapper. The type Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2Ba

had the following method:

private static Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bs A(

IExecutionEngineGenericArguments A_0,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BT A_1)

{

Assembly assembly = A_1.D(A_0).Assembly;

bool flag = A_1.E();

if (A_1.C())

{

return new Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bs(assembly,

A_1.D().B(),

flag,

A_1.D().A());

}

return new Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bs(A_1.A(A_0),

assembly,

A_1.D().B(),

flag,

A_1.D().A());

}

The last code line was relevant where the first constructor parameter was of type

MethodBase. This was the assignment of the B class field inside the constructor.

At this point it was feasible to test the assignment and invocation using the

debugger. WinDbg was a great tool, however this task strongly required a quick

browse and a detailed view of in-memory objects, and the DILE debugger was great

in that respect. DILE was launched, WinForms.exe was loaded, and the debugging

was started. The DILE’s request to analyze all referenced assemblies was confirmed.

In the tree structure the type Microsoft Licensing Permutation 5538c 2 0 3 2 1941 2Ba

was navigated to and the earlier presented method A was found by signature. A

breakpoint at the call at IL 0056 was set:

65

CHAPTER 3. PRACTICAL PART

IL_0056: callvirt instance string Microsoft_Licensing_Permutation_5538c_2_0_3_2_

1941_2U::A()

IL_005b: newobj instance void Microsoft_Licensing_Permutation_5538c_2_0_3_2_

1941_2Bs::.ctor(class [mscorlib]System.Reflection.MethodBase,

class [mscorlib]System.Reflection.Assembly,

valuetype [mscorlib]System.Guid, bool, string)

IL_0060: ret

A click on the “MessageBox” button was followed by DILE breaking at IL 004f.

After opening the “Local Variables Panel”, the V 2 variable’s type was RuntimeMethod-

Info. Right clicking on it and selecting “Display Object in Viewer” led to DILE

displaying a modal dialog where detailed .NET specific object information was pre-

sented. The dialog was closed, “Watch Panel” was opened and a new expression was

added for evaluation pusposes: V_2.FullName. Then the watch window was displaying

the full name of the method. Pressing F5 continued the execution. The breakpoint

was hit again and the watched expression changed. This “run-stop” happened tens

of times, and it was important to pay attention to the watched expression, because

interesting details about the protector runtime internals were exposed.

At some point, the following value appeared in the watched expression:

System.Windows.Forms.MessageBox.Show(System.String)

A 1 in “Arguments Panel” contained details. Basically, it was information about

the type itself, assembly it belonged to, method name, binding flags, return type,

parameters etc.

Next the following type was navigated to:

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bn

it was expanded and a breakpoint was set at IL 005d:

IL_005d: ldarg.1

IL_005e: ldarg.2

IL_005f: callvirt instance object [mscorlib]System.Reflection.MethodBase::Invoke(

object, object[])

Pressing F5, the second breakpoint was reached at IL 0052. There were three

arguments in the “Arguments Panel” tab. The first one encapsulated invocation

details including the assigned runtime method in the previous breakpoint. These

details could be retrieved if the object was analyzed in the “Object Browser” as

illustrated by Figure 3.9. The second argument was the instance object, and the

66

CHAPTER 3. PRACTICAL PART

Figure 3.9: The first argument analysis

third contained an array of arguments to be passed. Obviously, for static method

calls the second argument was null.

Viewing the third argument in “Object Browser” revealed runtime method ar-

guments: the array had a single item of string type with the value “Hello world!”.

Thus

base.B.D().Invoke(A_0, A_1);

was about to call the static method:

System.Windows.Forms.MessageBox.Show("Hello world!")

which of course resembled the unprotected btnMessageBox Click method body. As a

result, if local variables and arguments were analyzed for both breakpoints it was

possible to retrieve details about instances at runtime, and to find instances that

were part of the invocation (if static then null) and their arguments.

On the other hand, if btnSTMessageBox Click was reviewed some valuable informa-

tion would be missing. Unprotected btnSTMessageBox Click had a loop which iterated

over stack frames. The current interception approach provided details about types

including type instantiation12, properties accessed or assigned, methods called, and

arguments. However, there was no information about the aforementioned loop. Ob-

viously, when the second breakpoint was consequently reached numerous times and

12this is known because object constructor is a method thus visible here

67

CHAPTER 3. PRACTICAL PART

executing logic repeated itself it was an indication of a potential loop. Yet it was not a

reliable indication, and what’s more any flow control information was absent. Hence,

there must have been an orchestra conductor, an entity or entities that described the

semantics of the original method, because the protected code must have functioned

exactly as its unprotected counterpart.

This has been a simple 10K feet view of the protector. Nevertheless, points of in-

terest were easily identified without the in-depth study. At this point the description

has to be concluded in order to adhere to the initial personal intention: to reduce

the impact on existing applications. However, the presented shallow study was suf-

ficient to remove the protection for the unfortunate application reviewed in the next

subchapter.

3.2.2 Testing on a commercial application

The following subchapter determines the applicability of the knowledge obtained to a

commercial application. The target was a .NET WPF application. The software was

installed and activated with the obtained key. To conceal the application identity it

is further referred to as the APP and sensitive information is censored.

The previously used application was designed to assist the endpoints search, but

how to begin with the APP? The first approach was to perform static analysis with

the .NET Reflector. Even if the execution pipeline structure was different, the core

interfaces must have existed, unless the entire pipeline implementation was unique

too. I have already used the analogue of a car and its engine as an example of the

feasibility of the pipeline being unique for every application. If the pipeline structure

remained intact then a simple pattern search would have revealed the endpoints.

Nevertheless, I decided to use a different approach: application profiling. An earlier

review of endpoints at runtime determined that their invocation frequency was very

high, hence the profiler marked such methods as “hot”.

First the APP’s protected methods had to be identified in the decompiler. Only

one protected method was found which was executed during application startup

OnStartup callback in App class derived from Application class. It was probably

responsible for the application initialization. The following three App class methods

were particularly interesting:

protected override void OnStartup(StartupEventArgs e)

{

FrameworkElement.LanguageProperty.OverrideMetadata(typeof(FrameworkElement),

68

CHAPTER 3. PRACTICAL PART

new FrameworkPropertyMetadata(XmlLanguage.GetLanguage(

CultureInfo.CurrentCulture.IetfLanguageTag)));

if (VerifyInstalled())

{

this.Execute(e);

}

else

{

base.Shutdown(1);

}

}

[MethodImpl(MethodImplOptions.NoInlining)]

private void Execute(StartupEventArgs e)

{

object[] args = new object[] { e };

SLMRuntime.ExecuteMethod(this, "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", "",

args, null, null);

}

[MethodImpl(MethodImplOptions.NoInlining)]

public void _XXXXXXXXXXX_System.Windows.Application, PresentationFramework,

Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35_OnStartup(

StartupEventArgs A_0)

{

base.OnStartup(A_0);

}

The first method was a startup event callback. A quick analysis of VerifyInstalled

revealed that it checked if the application was properly installed, and if the protector’s

license storage was accessible. Then the protected Execute method was called. The

third method’s signature hinted that this method was inserted by the protector and

contained a part of the protected code that was not possible or convenient to execute

otherwise. As a result, that code was wrapped into a local method which was invoked

by the protector’s runtime. This assumption was trustworthy because the enclosing

type was System.Windows.Application, whose OnStartup method was overridden, but

base implementation which was required for the successful execution was never called.

Hence, the original unprotected Execute method version called base.OnStartup(e)13.

The profiling was started after loading the APP in ANTS Performance Profiler.

The details presented by Figure 3.10 were available in several seconds. These re-

sults were compared to the profiling results of the WinForms.exe used in Part 1 and

confirmed that the pipelines were identical with minor difference of an occasional

SLMRuntimeRedirect call and obviously different type names due to obfuscation.

13argument type is StartupEventArgs

69

CHAPTER 3. PRACTICAL PART

Figure 3.10: Revealed execution pipeline and endpoint.

According to previous experience, the next step was to load the APP in DILE

debugger, set two breakpoints to already known locations, and monitor the execution.

The entire procedure has one major drawback: every time a breakpoint was reached a

manual action was required. To automate the process DILE sources were downloaded,

an application form called CustomViewer was developed and integrated it into the

debugger.

The form’s code was mainly based on DILE’s own code with additional interfaces

to control the debugging process. The main features, as illustrated by Figure 3.11,

included detailed logging of the current method information including its arguments

and local variables. It was possible to filter which breakpoints were monitored. Fur-

thermore, the watch expression could be evaluated and the most important feature

was the conditional automatic resume.

Profiling revealed the method invocation endpoint, but the assignment endpoint

was also required which was easily found using the knowledge from the previous

subchapter. Setting a similar breakpoint in DILE and then enabling automatic resume

in CustomViewer was followed by starting the debugging. A charming logging process

began. After some time, the logging stopped while the application continued to run.

70

CHAPTER 3. PRACTICAL PART

Figure 3.11: Custom debugger assistant.

There were over two hundred log entries. The last log entries provided details about

the logic of protected code that started from the XXXXX.Ribbon.Services.License-

Service..ctor() entry. The debugging was stopped. The requirement was to stop

debugger when a method with that name was assigned. This condition was set in

CustomViewer as presented by 3.11. The debugging was started again and eventually

CustomViewer stopped the debugger when the conditions were satisfied. Next, the

breakpoint was set inside the invocation endpoint. Now, by analyzing the output in

CustomViewer and arguments inside the invocation method for each breakpoint hit,

it was possible to retrieve the execution details of the protected code. With minor

additional research I was able to convert my findings into a new version of OnStartup

method:

protected override void OnStartup(StartupEventArgs e)

{

FrameworkElement.LanguageProperty.OverrideMetadata(typeof(FrameworkElement),

new FrameworkPropertyMetadata(XmlLanguage.GetLanguage(

CultureInfo.CurrentCulture.IetfLanguageTag)));

71

CHAPTER 3. PRACTICAL PART

LicenseService licenseService = new LicenseService();

SplashScreenViewModel splashScreenViewModel = new SplashScreenViewModel(

licenseService.IsTrial());

SplashScreenView splashScreenView = new SplashScreenView

{

DataContext = splashScreenViewModel

};

splashScreenView.Show();

base.OnStartup(e);

new XXXXXBootstrapper(e.Args,

splashScreenView,

splashScreenViewModel,

licenseService)

.Run();

}

The new OnStartup method body could be easily inserted14 as C# code opposed to

per CIL instruction manipulation using the same Reflexil plugin. I also modified the

licenseService.IsTrial() to always return “false”. The patched binary had to be

tested, but first of all, the existing registration had to be removed. It was stored in

the registry key15:

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\SLP Services

For that purpose, the binary value that started with the ComputerIdData was re-

named, then the APP was started and the anticipated activation dialog appeared. The

next steps were to quit the application, overwrite existing binary with the patched

version and, finally, start it again. Success!

The original application and the patched binary are provided only for the thesis

supervisor as a proof of concept.

14“Replace all with code” feature. Existing class methods must be reinserted too
15activation data is stored in a single binary entry and during debugging it is possible to retrieve

activation details for all protected applications

72

Chapter 4

Additional areas of interest

Obviously there are more software utilities available than presented in this work.

They range from tracers of the JIT events to automatic CIL patching at runtime and

beyond. In addition, numerous tutorials, research papers, useful blog posts, training

courses such as OpenSecurityTraining and so on are spread across the Internet, and a

simple, but patient search reveals the information. Furthermore, http://www.crack-

mes.de is one of the most valuable sources for RCE.

The previous chapters presented background information about the .NET and de-

scribed static and dynamic code analysis emphasizing the benefits of their combina-

tion. However, another interesting research area was left out. Particularly the .NET

reflection mechanism in conjunction with runtime code injection and an attack on the

.NET Framework itself. The .NET reflection is a very powerful framework feature.

It provides an opportunity to obtain detailed information about any type, retrieve

current values from a type instance and what’s more, assign new values despite the

declared accessibility. Its capabilities are definitely not limited to the aforementioned.

Basically, there are two approaches to utilize it inside the target application: static

reference which requires binary modification or runtime which is a .NET specific form

of DLL injection. For that purpose it is convenient to first develop a separate .NET

assembly and execute it in the target application using either one of the approaches.

Attacking at runtime has certain benefits especially when static integration is not

feasible. The assumption is that the target is protected by a native code wrapper or

contains integrity validation of its binary file. However, when an application is al-

ready in memory and running, these procedures have already completed, thus such a

type of an attack becomes more relevant and easier. Nevertheless, there is an obstacle

to overcome which is to retrieve the pointer to the required instance object.

73

CHAPTER 4. ADDITIONAL AREAS OF INTEREST

There are several notable researchers in the area of attacking the .NET applica-

tions at runtime and the .NET Framework. One of them is Jon McCoy1 who is famous

for his tools and various conference presentations for developers and security experts.

All of the tools, sample applications, research papers and links to video presentations

are available on his website. I contacted Jon and he kindly agreed to share his views

and ideas on the subject. Moreover, he provided me with details on new upcoming

tools.

In my opinion, the GrayDragon is one of the most powerful tools he has devel-

oped. It allows injection of custom .NET assemblies to the target .NET application

at runtime. The most interesting part is how the actual .NET specific injection is

performed and how the CLR hosting feature2 is utilized to facilitate the task. The

GrayDragon contains several ready-made payloads that assist the target application

analysis. Basically, the payload is a .NET assembly that will be injected.

Here is a quick proof of concept for the FakeRealApp program. I developed a

simple .NET application that consists of only one button. The button’s click event

handler has the following code:

private void btnRegIt_Click(object sender, EventArgs e)

{

object inst = null;

foreach (Form frm in Application.OpenForms)

{

if (frm.Name == "MainForm")

{

inst = frm;

break;

}

}

if (inst == null)

{

MessageBox.Show("Target form is not found!");

return;

}

var type = inst.GetType();

var flags = BindingFlags.Instance | BindingFlags.NonPublic;

var prop = type.GetProperty("IsRegistered", flags);

prop.SetValue(inst, true, null);

var method = type.GetMethod("SetupUI", flags);

1http://www.digitalbodyguard.com
2was described in 2.4.2 subchapter

74

CHAPTER 4. ADDITIONAL AREAS OF INTEREST

method.Invoke(inst, null);

}

It enumerates through opened application forms, finds the required one and then

uses the .NET reflection to set the form’s IsRegistered property to “true” and call the

form’s SetupUI method. It is important to mention that this property and method are

not declared as public, thus they cannot be accessed directly. However the boundary

is eliminated by a BindingFlags.NonPublic flag. Finally, the payload is loaded into

target FakeRealApp through the GrayDragon as illustrated by Figure 4.1 and the

application state is changed to registered without the actual registration procedure.

Figure 4.1: .NET reflection at its glory

A very simple .NET code has altered the third-party application at runtime. The

use cases for the .NET reflection are tremendous. I think the most valuable for

RCE is the manipulation of existing application methods i.e. altering a method at

runtime. The analysis of the InishTech protector required a debugger, but what

if those endpoint methods were modified in a certain way and could report their

activity? The injected payload via reflection can access methods defined in another

assembly. Moreover, it is possible to retrieve the pointer to a native code of the

method, once it is compiled. In addition, methods can be entirely substituted at

runtime. Several of such approaches are discussed in [Wan13], [Cou13] and [Elm13].

Another powerful approach is to modify a compiled method’s native code directly.

75

CHAPTER 4. ADDITIONAL AREAS OF INTEREST

For testing purposes I have developed a simple application that has only one button

and a textbox. When the button is clicked a message box is displayed. The main

form also has a static method called Log that accepts arguments of the type object.

This method calls the ToString on that argument and the result is shown in the

textbox. I started the application in WinDbg, found the compiled native code for

the button click event handler, and manipulated the assembly code to redirect it

to the Log method. After the method was called I redirected the execution back.

From now on, when the button is clicked, a textbox displays the value. Then, the

original message box is displayed. To be honest, it was slightly more complicated,

because such edits require sufficient space to exist, so I had to add additional code3

whose native code instructions I can safely overwrite in-memory. Moreover, the Log

method was internally calling the LogActual (the actual logging method) for the

same purpose, because I needed to return the execution back to the initiator. But,

despite this minor drawback the approach has proven itself to be feasible. I think

it is applicable to the aforementioned InishTech protector too, as endpoints can now

be monitored without a debugger. What’s more, a special program that is able to

inject into specified methods and log all activity including values of local variables and

arguments can be developed. Such integration with logging capabilities reminds the

aspect-oriented programming paradigm applied at runtime but without a preliminary

setup.

Finally, the last thing I want to mention is the modification of the .NET Frame-

work itself. If malicious software attacks it, the consequences can be devastating.

Erez Metula discusses managed code rootkits in his “Managed Code Rootkits: Hook-

ing into Runtime Environments” book. Its scope is not limited to just .NET or

Java runtimes. In addition, the aforementioned Jon McCoy has similar sample ap-

plications that target the framework available on his website. From the RCE’s per-

spective, becoming friends with framework is extremely beneficial. The very same

analysis of the second invocation endpoint in the InishTech protector which calls the

MethodBase.Invoke method is a good example. The MethodBase type is defined in

framework’s library and if it is modified in certain way it can perform the logging

automatically for all .NET applications. And if similar modifications are extended

to all framework’s methods related to, e.g. reflection then, well, I think any additional

comments are redundant at this point.

3a dummy for loop

76

Chapter 5

Conclusion and future work

The RCE complexity of .NET applications depends on a concrete protector. Basi-

cally, it is either a protection implemented using native code (native wrappers, CIL

injectors, calling unmanaged DLL code etc.) or a managed counterpart (CIL obfus-

cation). Furthermore, a combination of these two is possible. I have demonstrated

tools and presented analysis applicable for both cases with the experiments on sam-

ple applications. Nevertheless, as seen, it is easier to analyze managed protection

due to available .NET metadata and the high-level object-oriented nature of the CIL.

Enough background information has been provided to understand the main principles

of the .NET specific RCE. The benefits of application analysis using a debugger have

been outlined regarding the protector which is strongly resilient to static analysis. In

addition, the power of attacking the application at runtime and the .NET reflection

have been described. What’s more, the benefit of directly integrating custom logic

into the .NET Framework libraries has been mentioned.

RCE is a very large topic. When I initially started my research, I studied a variety

of sources. Everything felt relevant. However, I soon realized that the material I had

gathered was enough for a whole book, hence I had to narrow everything to a scope of

the thesis requirements. As a result, I decided to follow a different approach and create

a document that contains, in my opinion, the most fundamental information on the

subject that can serve as a decent supplementary to any of the freely available .NET

RCE sources. In addition, I now have a clear vision of RCE tools and important

features I would like to have. Some of these ideas were shared with Jon McCoy

and, hopefully, this will have an effect on his upcoming tools. Next, the presented

knowledge allows me, a regular .NET developer, to be conscious of existing code

protection solutions for .NET and their major pitfalls.

77

CHAPTER 5. CONCLUSION AND FUTURE WORK

Finally, a general recommendation for developers is to create decent software with

a reasonable price tag. Custom validation is always welcome as an addition to exter-

nal code protector. The question is not if the software will be cracked, but when. I

consider that the end users’ appreciation of the software is what actually brings the

revenue. Those who want to use it for free will use it for free anyway.

An old member of the RCE scene once said:

“If it runs, it can be defeated!”

78

Bibliography

[Ber13] Andrea Bertolotto. Removing Strong-Signing from Assemblies at File

Level (byte patching). http://www.codeproject.com/Articles/15374/

Removing-Strong-Signing-from-As, June 2013.

[CNE13] CNET News. Sun, Microsoft settle Java suit. http://news.cnet.com/

2100-1001-251401.html, March 2013.

[Cou13] Julien Couvreur. Modifying IL at runtime. http://blog.monstuff.com/

archives/000058.html, June 2013.

[Dai13] Andrew Dai. Exploring the .NET Framework 4 Security Model. http:

//msdn.microsoft.com/en-us/magazine/ee677170.aspx, June 2013.

[Elm13] Ziad Elmalki. CLR Injection: Runtime Method Re-

placer. http://www.codeproject.com/Articles/37549/

CLR-Injection-Runtime-Method-Replacer, June 2013.

[Far13] Jim Farley. Microsoft .NET vs. J2EE: How Do They Stack

Up? http://www.oreillynet.com/pub/a/oreilly/java/news/farley_

0800.html, March 2013.

[Fra03] S.R.G. Fraser. Managed C++ and .NET Development. Apress, 2003.

[Fry06] Linn Marie Frydenberg. Analysis of Obfuscated CIL code. Master’s thesis,

August 2006.

[Gil13] Howard Gilbert. .NET Framework. http://pclt.cis.yale.edu/tp/

framework.htm, March 2013.

[Gun13] Mike Gunderloy. Understanding and Using Assemblies and Namespaces

in .NET. http://msdn.microsoft.com/en-us/library/ms973231.aspx,

March 2013.

79

http://www.codeproject.com/Articles/15374/Removing-Strong-Signing-from-As
http://www.codeproject.com/Articles/15374/Removing-Strong-Signing-from-As
http://news.cnet.com/2100-1001-251401.html
http://news.cnet.com/2100-1001-251401.html
http://blog.monstuff.com/archives/000058.html
http://blog.monstuff.com/archives/000058.html
http://msdn.microsoft.com/en-us/magazine/ee677170.aspx
http://msdn.microsoft.com/en-us/magazine/ee677170.aspx
http://www.codeproject.com/Articles/37549/CLR-Injection-Runtime-Method-Replacer
http://www.codeproject.com/Articles/37549/CLR-Injection-Runtime-Method-Replacer
http://www.oreillynet.com/pub/a/oreilly/java/news/farley_0800.html
http://www.oreillynet.com/pub/a/oreilly/java/news/farley_0800.html
http://pclt.cis.yale.edu/tp/framework.htm
http://pclt.cis.yale.edu/tp/framework.htm
http://msdn.microsoft.com/en-us/library/ms973231.aspx

BIBLIOGRAPHY

[Hew10] Mario Hewardt. Advanced .NET Debugging. Addison-Wesley, 2010.

[Ini13] InishTech. Software Potential. Software Licens-

ing from the Cloud. http://support.inishtech.

com/getdoc/00359bb0-84de-4a79-910f-a331f8c5b9ef/

Software-Potential-Service-Overview.aspx, June 2013.

[Joh13] Steve Johnson. Sosex home page. http://www.stevestechspot.com, June

2013.

[Lid06] S. Lidin. Expert .NET 2.0 Assembler. Apress, 2006.

[Lip13] Eric Lippert. What’s the Difference, Part Five:

certificate signing vs strong naming. http://

blogs.msdn.com/b/ericlippert/archive/2009/09/03/

what-s-the-difference-part-five-certificate-signing-vs-strong-naming.

aspx, June 2013.

[LT13] Richard Linger and Carmen Trammell. Cleanroom Software Engineer-

ing Reference. http://www.sei.cmu.edu/library/abstracts/reports/

96tr022.cfm, January 2013.

[Mic13a] Microsoft. Assembly Contents. http://msdn.microsoft.com/en-us/

library/zst29sk2.aspx, March 2013.

[Mic13b] Microsoft. Assembly Manifest. http://msdn.microsoft.com/en-us/

library/1w45z383.aspx, March 2013.

[Mic13c] Microsoft. CorValidateImage Function. http://msdn.microsoft.com/

en-us/library/4ce9k7xb(v=vs.110).aspx, April 2013.

[Mic13d] Microsoft. Download and Install Debugging Tools for Windows. http:

//msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx, June

2013.

[Mic13e] Microsoft. Introduction to the C# Language and the .NET Frame-

work. http://msdn.microsoft.com/en-us/library/vstudio/z1zx9t92.

aspx, March 2013.

80

http://support.inishtech.com/getdoc/00359bb0-84de-4a79-910f-a331f8c5b9ef/Software-Potential-Service-Overview.aspx
http://support.inishtech.com/getdoc/00359bb0-84de-4a79-910f-a331f8c5b9ef/Software-Potential-Service-Overview.aspx
http://support.inishtech.com/getdoc/00359bb0-84de-4a79-910f-a331f8c5b9ef/Software-Potential-Service-Overview.aspx
http://www.stevestechspot.com
http://blogs.msdn.com/b/ericlippert/archive/2009/09/03/what-s-the-difference-part-five-certificate-signing-vs-strong-naming.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/09/03/what-s-the-difference-part-five-certificate-signing-vs-strong-naming.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/09/03/what-s-the-difference-part-five-certificate-signing-vs-strong-naming.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/09/03/what-s-the-difference-part-five-certificate-signing-vs-strong-naming.aspx
http://www.sei.cmu.edu/library/abstracts/reports/96tr022.cfm
http://www.sei.cmu.edu/library/abstracts/reports/96tr022.cfm
http://msdn.microsoft.com/en-us/library/zst29sk2.aspx
http://msdn.microsoft.com/en-us/library/zst29sk2.aspx
http://msdn.microsoft.com/en-us/library/1w45z383.aspx
http://msdn.microsoft.com/en-us/library/1w45z383.aspx
http://msdn.microsoft.com/en-us/library/4ce9k7xb(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/4ce9k7xb(v=vs.110).aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx
http://msdn.microsoft.com/en-us/library/vstudio/z1zx9t92.aspx
http://msdn.microsoft.com/en-us/library/vstudio/z1zx9t92.aspx

BIBLIOGRAPHY

[Mic13f] Microsoft. Microsoft Portable Executable and Common Object File

Format Specification. http://msdn.microsoft.com/library/windows/

hardware/gg463125, March 2013.

[Mic13g] Microsoft. Mixed (Native and Managed) Assemblies. http://msdn.

microsoft.com/en-us/library/x0w2664k.aspx, March 2013.

[Mic13h] Microsoft. .NET Framework Conceptual Overview. http://msdn.

microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.100).aspx,

March 2013.

[Mic13i] Microsoft. Overview of Metadata. http://msdn.microsoft.com/en-us/

library/ms404430.aspx, March 2013.

[Mic13j] Microsoft. Overview of the .NET Framework. http://msdn.microsoft.

com/en-us/library/zw4w595w.aspx, February 2013.

[Mic13k] Microsoft. Security Policy Management. http://msdn.microsoft.com/

en-us/library/vstudio/c1k0eed6(v=vs.100).aspx, June 2013.

[Mic13l] Microsoft. SOS.dll (SOS Debugging Extension). http://msdn.microsoft.

com/en-us/library/bb190764.aspx, June 2013.

[Mic13m] Microsoft. Use the Microsoft Symbol Server to obtain debug symbol files.

http://support.microsoft.com/kb/311503, June 2013.

[Mic13n] Microsoft and partners. Standard ECMA-335 Common Lan-

guage Infrastructure (CLI) 6th edition (June 2012). http://www.

ecma-international.org/publications/standards/Ecma-335.htm,

March 2013.

[Mic13o] Microsoft Patterns & Practices Team. Microsoft Application Architec-

ture Guide, 2nd Edition. http://msdn.microsoft.com/en-us/library/

ee658104.aspx, January 2013.

[Mor08] J.A. Morales. Threat of renovated. net viruses to mobile devices. In Pro-

ceedings of the 46th Annual Southeast Regional Conference on XX, pages

367–372. ACM, 2008.

[Mur05] Nicholas John Murison. .NET Framework Security. Master’s thesis, January

2005.

81

http://msdn.microsoft.com/library/windows/hardware/gg463125
http://msdn.microsoft.com/library/windows/hardware/gg463125
http://msdn.microsoft.com/en-us/library/x0w2664k.aspx
http://msdn.microsoft.com/en-us/library/x0w2664k.aspx
http://msdn.microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/zw4w595w(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/ms404430.aspx
http://msdn.microsoft.com/en-us/library/ms404430.aspx
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/zw4w595w.aspx
http://msdn.microsoft.com/en-us/library/vstudio/c1k0eed6(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/vstudio/c1k0eed6(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb190764.aspx
http://msdn.microsoft.com/en-us/library/bb190764.aspx
http://support.microsoft.com/kb/311503
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://msdn.microsoft.com/en-us/library/ee658104.aspx
http://msdn.microsoft.com/en-us/library/ee658104.aspx

BIBLIOGRAPHY

[Pis13a] Daniel Pistelli. Cffexplorer. http://www.ntcore.com/exsuite.php, March

2013.

[Pis13b] Daniel Pistelli. .NET Internals and Code Injection. http://ntcore.com/

files/netint_injection.htm, March 2013.

[Pis13c] Daniel Pistelli. .NET Internals and Native Compiling. http://www.

ntcore.com/files/netint_native.htm, March 2013.

[Pis13d] Daniel Pistelli. Remotesoft’s Salamander 1.1.6.0 (Native Compiling). http:

//www.ntcore.com/files/salamander.htm, March 2013.

[Pis13e] Daniel Pistelli. The .NET File Format. http://www.ntcore.com/files/

dotnetformat.htm, March 2013.

[PNSS08] J. Pobar, T. Neward, D. Stutz, and G. Shilling. Shared Source CLI 2.0

Internals. 2008.

[Pot05] V.E. Poteat. Classroom ethics: hacking and cracking. Journal of Computing

Sciences in Colleges, 20(3):225–231, 2005.

[Ric10] Jeffrey Richter. CLR via C#. Microsoft Press, 2010.

[sha13] shaheeng. The XBox Operating System. http://blogs.msdn.com/b/

xboxteam/archive/2006/02/17/534421.aspx, February 2013.

[Smi13] SmidgeonSoft. Windows Debugger, Disassembler, Code Analyzers. http:

//www.smidgeonsoft.prohosting.com/software.html, June 2013.

[Sta13] Mike Stall. Debugabbility with Roundtripping Assemblies. http://blogs.

msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.

aspx, June 2013.

[Wan13] Jerry Wang. .NET CLR Injection: Modify IL Code dur-

ing Run-time. http://www.codeproject.com/Articles/463508/

NET-CLR-Injection-Modify-IL-Code-during-Run-time, June 2013.

[Xam13] Xamarin and Mono community. Mono project. http://www.

mono-project.com, February 2013.

[Yus13] Oleh Yuschuk. Ollydbg. http://www.ollydbg.de, June 2013.

82

http://www.ntcore.com/exsuite.php
http://ntcore.com/files/netint_injection.htm
http://ntcore.com/files/netint_injection.htm
http://www.ntcore.com/files/netint_native.htm
http://www.ntcore.com/files/netint_native.htm
http://www.ntcore.com/files/salamander.htm
http://www.ntcore.com/files/salamander.htm
http://www.ntcore.com/files/dotnetformat.htm
http://www.ntcore.com/files/dotnetformat.htm
http://blogs.msdn.com/b/xboxteam/archive/2006/02/17/534421.aspx
http://blogs.msdn.com/b/xboxteam/archive/2006/02/17/534421.aspx
http://www.smidgeonsoft.prohosting.com/software.html
http://www.smidgeonsoft.prohosting.com/software.html
http://blogs.msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.aspx
http://blogs.msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.aspx
http://blogs.msdn.com/b/jmstall/archive/2006/01/13/debug-roundtripping.aspx
http://www.codeproject.com/Articles/463508/NET-CLR-Injection-Modify-IL-Code-during-Run-time
http://www.codeproject.com/Articles/463508/NET-CLR-Injection-Modify-IL-Code-during-Run-time
http://www.mono-project.com
http://www.mono-project.com
http://www.ollydbg.de

BIBLIOGRAPHY

[Zso13] Petrny Zsolt. Dotnet IL Editor. http://sourceforge.net/projects/

dile, June 2013.

83

http://sourceforge.net/projects/dile
http://sourceforge.net/projects/dile

Appendix A

Dumpbin utility output for

SampleApp.exe

RAW DATA content was skipped

Microsoft (R) COFF/PE Dumper Version 10.00.40219.01

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file SampleApp.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

14C machine (x86)

3 number of sections

519A91C8 time date stamp Tue May 21 00:12:40 2013

0 file pointer to symbol table

0 number of symbols

E0 size of optional header

102 characteristics

Executable

32 bit word machine

OPTIONAL HEADER VALUES

10B magic # (PE32)

11.00 linker version

800 size of code

800 size of initialized data

0 size of uninitialized data

276E entry point (0040276E)

2000 base of code

4000 base of data

400000 image base (00400000 to 00407FFF)

2000 section alignment

200 file alignment

4.00 operating system version

APPENDIX A. DUMPBIN UTILITY OUTPUT FOR SAMPLEAPP.EXE

0.00 image version

4.00 subsystem version

0 Win32 version

8000 size of image

200 size of headers

0 checksum

3 subsystem (Windows CUI)

8540 DLL characteristics

Dynamic base

NX compatible

No structured exception handler

Terminal Server Aware

100000 size of stack reserve

1000 size of stack commit

100000 size of heap reserve

1000 size of heap commit

0 loader flags

10 number of directories

0 [0] RVA [size] of Export Directory

2720 [4B] RVA [size] of Import Directory

4000 [540] RVA [size] of Resource Directory

0 [0] RVA [size] of Exception Directory

0 [0] RVA [size] of Certificates Directory

6000 [C] RVA [size] of Base Relocation Directory

26AC [1C] RVA [size] of Debug Directory

0 [0] RVA [size] of Architecture Directory

0 [0] RVA [size] of Global Pointer Directory

0 [0] RVA [size] of Thread Storage Directory

0 [0] RVA [size] of Load Configuration Directory

0 [0] RVA [size] of Bound Import Directory

2000 [8] RVA [size] of Import Address Table Directory

0 [0] RVA [size] of Delay Import Directory

2008 [48] RVA [size] of COM Descriptor Directory

0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1

.text name

774 virtual size

2000 virtual address (00402000 to 00402773)

800 size of raw data

200 file pointer to raw data (00000200 to 000009FF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

60000020 flags

Code

Execute Read

RAW DATA #1 - SKIPPED

Debug Directories

85

APPENDIX A. DUMPBIN UTILITY OUTPUT FOR SAMPLEAPP.EXE

Time Type Size RVA Pointer

-------- ------ -------- -------- --------

519A91C8 cv 57 000026C8 8C8

Format: RSDS, {0B35ACCC-A7E2-459F-92F5-1A98510CE2E8}, 15,

c:\Workspace\SampleApp\SampleApp\obj\x86\Release\SampleApp.pdb

clr Header:

48 cb

2.05 runtime version

2064 [648] RVA [size] of MetaData Directory

3 flags

IL Only

32-Bit Required

6000001 entry point token

0 [0] RVA [size] of Resources Directory

0 [0] RVA [size] of StrongNameSignature Directory

0 [0] RVA [size] of CodeManagerTable Directory

0 [0] RVA [size] of VTableFixups Directory

0 [0] RVA [size] of ExportAddressTableJumps Directory

0 [0] RVA [size] of ManagedNativeHeader Directory

Section contains the following imports:

mscoree.dll

402000 Import Address Table

402748 Import Name Table

0 time date stamp

0 Index of first forwarder reference

0 _CorExeMain

SECTION HEADER #2

.rsrc name

540 virtual size

4000 virtual address (00404000 to 0040453F)

600 size of raw data

A00 file pointer to raw data (00000A00 to 00000FFF)

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

40000040 flags

Initialized Data

Read Only

RAW DATA #2 -SKIPPED

SECTION HEADER #3

.reloc name

C virtual size

6000 virtual address (00406000 to 0040600B)

200 size of raw data

1000 file pointer to raw data (00001000 to 000011FF)

86

APPENDIX A. DUMPBIN UTILITY OUTPUT FOR SAMPLEAPP.EXE

0 file pointer to relocation table

0 file pointer to line numbers

0 number of relocations

0 number of line numbers

42000040 flags

Initialized Data

Discardable

Read Only

RAW DATA #3 - SKIPPED

BASE RELOCATIONS #3

2000 RVA, C SizeOfBlock

770 HIGHLOW 00402000

0 ABS

Summary

2000 .reloc

2000 .rsrc

2000 .text

87

Appendix B

Stack trace of the protected
method call

--- StackFrame #: 0 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstance

MethodNameFull=System.RuntimeTypeHandle.CreateInstance

MethodSignature=CreateInstance(System.RuntimeType, Boolean, Boolean, Boolean ByRef,

System.RuntimeMethodHandleInternal ByRef, Boolean ByRef)

MethodSignatureFull=System.Object System.RuntimeTypeHandle.CreateInstance(

System.RuntimeType, Boolean, Boolean, Boolean ByRef,

System.RuntimeMethodHandleInternal ByRef, Boolean ByRef)

Namespace=System

ReturnName=System.Object

Text=System.Object System.RuntimeTypeHandle.CreateInstance(System.RuntimeType, Boolean,

Boolean, Boolean ByRef, System.RuntimeMethodHandleInternal ByRef,

Boolean ByRef)[]

TypeName=RuntimeTypeHandle

TypeNameFull=System.RuntimeTypeHandle

--- StackFrame #: 1 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstanceSlow

MethodNameFull=System.RuntimeType.CreateInstanceSlow

MethodSignature=CreateInstanceSlow(Boolean, Boolean, Boolean, System.Threading

.StackCrawlMark ByRef)

MethodSignatureFull=System.Object System.RuntimeType.CreateInstanceSlow(Boolean,

Boolean, Boolean, System.Threading.StackCrawlMark ByRef)

Namespace=System

ReturnName=System.Object

Text=System.Object System.RuntimeType.CreateInstanceSlow(Boolean, Boolean, Boolean,

System.Threading.StackCrawlMark ByRef)[]

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

TypeName=RuntimeType

TypeNameFull=System.RuntimeType

--- StackFrame #: 2 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstanceDefaultCtor

MethodNameFull=System.RuntimeType.CreateInstanceDefaultCtor

MethodSignature=CreateInstanceDefaultCtor(Boolean, Boolean, Boolean, System

.Threading.StackCrawlMark ByRef)

MethodSignatureFull=System.Object System.RuntimeType.CreateInstanceDefaultCtor(

Boolean, Boolean, Boolean, System.Threading.StackCrawlMark ByRef)

Namespace=System

ReturnName=System.Object

Text=System.Object System.RuntimeType.CreateInstanceDefaultCtor(Boolean, Boolean, Boolean,

System.Threading.StackCrawlMark ByRef)[]

TypeName=RuntimeType

TypeNameFull=System.RuntimeType

--- StackFrame #: 3 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstance

MethodNameFull=System.Activator.CreateInstance

MethodSignature=CreateInstance(System.Type, Boolean)

MethodSignatureFull=System.Object System.Activator.CreateInstance(System.Type, Boolean)

Namespace=System

ReturnName=System.Object

Text=System.Object System.Activator.CreateInstance(System.Type, Boolean)[]

TypeName=Activator

TypeNameFull=System.Activator

--- StackFrame #: 4 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstanceImpl

MethodNameFull=System.RuntimeType.CreateInstanceImpl

MethodSignature=CreateInstanceImpl(System.Reflection.BindingFlags, System.Reflection

.Binder, System.Object[], System.Globalization.CultureInfo,

System.Object[], System.Threading.StackCrawlMark ByRef)

MethodSignatureFull=System.Object System.RuntimeType.CreateInstanceImpl(System.Reflection

.BindingFlags, System.Reflection.Binder, System.Object[],

System.Globalization.CultureInfo, System.Object[], System.Threading

.StackCrawlMark ByRef)

Namespace=System

ReturnName=System.Object

Text=System.Object System.RuntimeType.CreateInstanceImpl(System.Reflection.BindingFlags,

System.Reflection.Binder, System.Object[], System.Globalization.CultureInfo,

89

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

System.Object[], System.Threading.StackCrawlMark ByRef)[]

TypeName=RuntimeType

TypeNameFull=System.RuntimeType

--- StackFrame #: 5 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstance

MethodNameFull=System.Activator.CreateInstance

MethodSignature=CreateInstance(System.Type, System.Reflection.BindingFlags, System

.Reflection.Binder, System.Object[], System.Globalization.CultureInfo,

System.Object[])

MethodSignatureFull=System.Object System.Activator.CreateInstance(System.Type,

System.Reflection.BindingFlags, System.Reflection.Binder, System.Object[],

System.Globalization.CultureInfo, System.Object[])

Namespace=System

ReturnName=System.Object

Text=System.Object System.Activator.CreateInstance(System.Type, System.Reflection

.BindingFlags, System.Reflection.Binder, System.Object[], System

.Globalization.CultureInfo, System.Object[])[]

TypeName=Activator

TypeNameFull=System.Activator

--- StackFrame #: 6 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=CreateInstance

MethodNameFull=System.Activator.CreateInstance

MethodSignature=CreateInstance(System.Type, System.Reflection.BindingFlags, System

.Reflection.Binder, System.Object[], System.Globalization.CultureInfo)

MethodSignatureFull=System.Object System.Activator.CreateInstance(System.Type,

System.Reflection.BindingFlags, System.Reflection.Binder,

System.Object[], System.Globalization.CultureInfo)

Namespace=System

ReturnName=System.Object

Text=System.Object System.Activator.CreateInstance(System.Type, System.Reflection

.BindingFlags, System.Reflection.Binder, System.Object[],

System.Globalization.CultureInfo)[]

TypeName=Activator

TypeNameFull=System.Activator

--- StackFrame #: 7 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS.A

MethodSignature=A(System.Reflection.MethodBase,

90

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BD[])

MethodSignatureFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rN

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS.A(

System.Reflection.MethodBase,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BD[])

Namespace=

ReturnName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rN

Text=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2rN

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS.A(

System.Reflection.MethodBase,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BD[])[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BS

--- StackFrame #: 8 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=C

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BZ.C

MethodSignature=C()

MethodSignatureFull=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BZ.C()

Namespace=

ReturnName=Void

Text=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BZ.C()[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BZ

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BE+

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BZ

--- StackFrame #: 9 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=I

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi.I

MethodSignature=I()

MethodSignatureFull=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi.I()

Namespace=

ReturnName=Void

Text=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi.I()[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bi

--- StackFrame #: 10 - 11/7/2013 4:40:45 PM ---

nFileName=

91

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2F.A

MethodSignature=A(Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)

MethodSignatureFull=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2F.A(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)

Namespace=

ReturnName=Void

Text=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2F.A(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2F

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2F

--- StackFrame #: 11 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=E

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v.E

MethodSignature=E(Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)

MethodSignatureFull=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v.E(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)

Namespace=

ReturnName=Void

Text=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v.E(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v

--- StackFrame #: 12 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

MethodSignature=A(Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v)

MethodSignatureFull=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v)

Namespace=

ReturnName=Void

Text=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2v)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

--- StackFrame #: 13 - 11/7/2013 4:40:45 PM ---

nFileName=

92

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

MethodSignature=A(Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)

MethodSignatureFull=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)

Namespace=

ReturnName=Void

Text=Void Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BB)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

--- StackFrame #: 14 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

MethodSignature=A(Slps.Engine.Execution.Internal.IExecutionEngineParams,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BL)

MethodSignatureFull=

System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Slps.Engine.Execution.Internal.IExecutionEngineParams,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BL)

Namespace=

ReturnName=System.Object

Text=System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Slps.Engine.Execution.Internal.IExecutionEngineParams,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2BL)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

--- StackFrame #: 15 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A

MethodSignature=A(Byte[], Slps.Engine.Execution.Internal.IExecutionEngineParams,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bo, Boolean)

MethodSignatureFull=

System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Byte[], Slps.Engine.Execution.Internal.IExecutionEngineParams,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bo, Boolean)

Namespace=

ReturnName=System.Object

Text=System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr.A(

Byte[], Slps.Engine.Execution.Internal.IExecutionEngineParams,

Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2Bo, Boolean)[]

93

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2wr

--- StackFrame #: 16 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A

MethodSignature=A(System.Reflection.Assembly, Byte[],

Slps.Engine.Execution.Internal.IExecutionEngineParams, Boolean)

MethodSignatureFull=

System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A(

System.Reflection.Assembly, Byte[],

Slps.Engine.Execution.Internal.IExecutionEngineParams, Boolean)

Namespace=

ReturnName=System.Object

Text=System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A(

System.Reflection.Assembly, Byte[],

Slps.Engine.Execution.Internal.IExecutionEngineParams, Boolean)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft

--- StackFrame #: 17 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=A

MethodNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A

MethodSignature=A(System.Reflection.Assembly, System.String,

Slps.Engine.Execution.Internal.IExecutionEngineParams)

MethodSignatureFull=

System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A(

System.Reflection.Assembly, System.String,

Slps.Engine.Execution.Internal.IExecutionEngineParams)

Namespace=

ReturnName=System.Object

Text=System.Object Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft.A(

System.Reflection.Assembly, System.String,

Slps.Engine.Execution.Internal.IExecutionEngineParams)[]

TypeName=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft

TypeNameFull=Microsoft_Licensing_Permutation_5538c_2_0_3_2_1941_2ft

--- StackFrame #: 18 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=InternalExecuteMethod

MethodNameFull=Microsoft.Licensing.SLMRuntime.InternalExecuteMethod

MethodSignature=InternalExecuteMethod(System.Reflection.Assembly, System.String,

Slps.Engine.Execution.Internal.IExecutionEngineParams)

94

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

MethodSignatureFull=System.Object Microsoft.Licensing.SLMRuntime.InternalExecuteMethod(

System.Reflection.Assembly, System.String,

Slps.Engine.Execution.Internal.IExecutionEngineParams)

Namespace=Microsoft.Licensing

ReturnName=System.Object

Text=System.Object Microsoft.Licensing.SLMRuntime.InternalExecuteMethod(

System.Reflection.Assembly, System.String,

Slps.Engine.Execution.Internal.IExecutionEngineParams)[]

TypeName=SLMRuntime

TypeNameFull=Microsoft.Licensing.SLMRuntime

--- StackFrame #: 19 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=ExecuteMethod

MethodNameFull=Microsoft.Licensing.SLMRuntime.ExecuteMethod

MethodSignature=ExecuteMethod(System.Object, System.String, System.String,

System.Object[], System.Type[], System.Type[])

MethodSignatureFull=

System.Object Microsoft.Licensing.SLMRuntime.ExecuteMethod(

System.Object, System.String, System.String, System.Object[],

System.Type[], System.Type[])

Namespace=Microsoft.Licensing

ReturnName=System.Object

Text=System.Object Microsoft.Licensing.SLMRuntime.ExecuteMethod(System.Object,

System.String, System.String, System.Object[], System.Type[],

System.Type[])[]

TypeName=SLMRuntime

TypeNameFull=Microsoft.Licensing.SLMRuntime

--- StackFrame #: 20 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=btnSTMessageBox_Click

MethodNameFull=WinForms.Form1.btnSTMessageBox_Click

MethodSignature=btnSTMessageBox_Click(System.Object, System.EventArgs)

MethodSignatureFull=

Void WinForms.Form1.btnSTMessageBox_Click(System.Object, System.EventArgs)

Namespace=WinForms

ReturnName=Void

Text=Void WinForms.Form1.btnSTMessageBox_Click(System.Object, System.EventArgs)[]

TypeName=Form1

TypeNameFull=WinForms.Form1

--- StackFrame #: 21 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=OnClick

95

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

MethodNameFull=System.Windows.Forms.Control.OnClick

MethodSignature=OnClick(System.EventArgs)

MethodSignatureFull=Void System.Windows.Forms.Control.OnClick(System.EventArgs)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Control.OnClick(System.EventArgs)[]

TypeName=Control

TypeNameFull=System.Windows.Forms.Control

--- StackFrame #: 22 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=OnClick

MethodNameFull=System.Windows.Forms.Button.OnClick

MethodSignature=OnClick(System.EventArgs)

MethodSignatureFull=Void System.Windows.Forms.Button.OnClick(System.EventArgs)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Button.OnClick(System.EventArgs)[]

TypeName=Button

TypeNameFull=System.Windows.Forms.Button

--- StackFrame #: 23 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=OnMouseUp

MethodNameFull=System.Windows.Forms.Button.OnMouseUp

MethodSignature=OnMouseUp(System.Windows.Forms.MouseEventArgs)

MethodSignatureFull=Void System.Windows.Forms.Button.OnMouseUp(

System.Windows.Forms.MouseEventArgs)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Button.OnMouseUp(System.Windows.Forms.MouseEventArgs)[]

TypeName=Button

TypeNameFull=System.Windows.Forms.Button

--- StackFrame #: 24 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=WmMouseUp

MethodNameFull=System.Windows.Forms.Control.WmMouseUp

MethodSignature=WmMouseUp(System.Windows.Forms.Message ByRef,

System.Windows.Forms.MouseButtons, Int32)

MethodSignatureFull=Void System.Windows.Forms.Control.WmMouseUp(

System.Windows.Forms.Message ByRef,

System.Windows.Forms.MouseButtons, Int32)

Namespace=System.Windows.Forms

ReturnName=Void

96

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

Text=Void System.Windows.Forms.Control.WmMouseUp(

System.Windows.Forms.Message ByRef,

System.Windows.Forms.MouseButtons, Int32)[]

TypeName=Control

TypeNameFull=System.Windows.Forms.Control

--- StackFrame #: 25 - 11/7/2013 4:40:45 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=WndProc

MethodNameFull=System.Windows.Forms.Control.WndProc

MethodSignature=WndProc(System.Windows.Forms.Message ByRef)

MethodSignatureFull=Void System.Windows.Forms.Control.WndProc(

System.Windows.Forms.Message ByRef)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Control.WndProc(

System.Windows.Forms.Message ByRef)[]

TypeName=Control

TypeNameFull=System.Windows.Forms.Control

--- StackFrame #: 26 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=WndProc

MethodNameFull=System.Windows.Forms.ButtonBase.WndProc

MethodSignature=WndProc(System.Windows.Forms.Message ByRef)

MethodSignatureFull=Void System.Windows.Forms.ButtonBase.WndProc(

System.Windows.Forms.Message ByRef)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.ButtonBase.WndProc(

System.Windows.Forms.Message ByRef)[]

TypeName=ButtonBase

TypeNameFull=System.Windows.Forms.ButtonBase

--- StackFrame #: 27 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=WndProc

MethodNameFull=System.Windows.Forms.Button.WndProc

MethodSignature=WndProc(System.Windows.Forms.Message ByRef)

MethodSignatureFull=Void System.Windows.Forms.Button.WndProc(

System.Windows.Forms.Message ByRef)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Button.WndProc(

System.Windows.Forms.Message ByRef)[]

97

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

TypeName=Button

TypeNameFull=System.Windows.Forms.Button

--- StackFrame #: 28 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=OnMessage

MethodNameFull=System.Windows.Forms.Control+ControlNativeWindow.OnMessage

MethodSignature=OnMessage(System.Windows.Forms.Message ByRef)

MethodSignatureFull=Void System.Windows.Forms.Control+

ControlNativeWindow.OnMessage(

System.Windows.Forms.Message ByRef)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Control+ControlNativeWindow.OnMessage(

System.Windows.Forms.Message ByRef)[]

TypeName=ControlNativeWindow

TypeNameFull=System.Windows.Forms.Control+ControlNativeWindow

--- StackFrame #: 29 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=WndProc

MethodNameFull=System.Windows.Forms.Control+ControlNativeWindow.WndProc

MethodSignature=WndProc(System.Windows.Forms.Message ByRef)

MethodSignatureFull=Void System.Windows.Forms.Control+

ControlNativeWindow.WndProc(

System.Windows.Forms.Message ByRef)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Control+ControlNativeWindow.WndProc(

System.Windows.Forms.Message ByRef)[]

TypeName=ControlNativeWindow

TypeNameFull=System.Windows.Forms.Control+ControlNativeWindow

--- StackFrame #: 30 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=Callback

MethodNameFull=System.Windows.Forms.NativeWindow.Callback

MethodSignature=Callback(IntPtr, Int32, IntPtr, IntPtr)

MethodSignatureFull=IntPtr System.Windows.Forms.NativeWindow.Callback(

IntPtr, Int32, IntPtr, IntPtr)

Namespace=System.Windows.Forms

ReturnName=IntPtr

Text=IntPtr System.Windows.Forms.NativeWindow.Callback(IntPtr, Int32,

IntPtr, IntPtr)[]

TypeName=NativeWindow

98

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

TypeNameFull=System.Windows.Forms.NativeWindow

--- StackFrame #: 31 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=DispatchMessageW

MethodNameFull=System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW

MethodSignature=DispatchMessageW(MSG ByRef)

MethodSignatureFull=

IntPtr System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG ByRef)

Namespace=System.Windows.Forms

ReturnName=IntPtr

Text=IntPtr System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG ByRef)[]

TypeName=UnsafeNativeMethods

TypeNameFull=System.Windows.Forms.UnsafeNativeMethods

--- StackFrame #: 32 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop

MethodNameFull=System.Windows.Forms.Application+ComponentManager.System.Windows.Forms

.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop

MethodSignature=System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager

.FPushMessageLoop(IntPtr, Int32, Int32)

MethodSignatureFull=Boolean System.Windows.Forms.Application+ComponentManager.System

.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager

.FPushMessageLoop(IntPtr, Int32, Int32)

Namespace=System.Windows.Forms

ReturnName=Boolean

Text=Boolean System.Windows.Forms.Application+ComponentManager.System.Windows.Forms

.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(IntPtr, Int32,

Int32)[]

TypeName=ComponentManager

TypeNameFull=System.Windows.Forms.Application+ComponentManager

--- StackFrame #: 33 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=RunMessageLoopInner

MethodNameFull=System.Windows.Forms.Application+ThreadContext.RunMessageLoopInner

MethodSignature=RunMessageLoopInner(Int32, System.Windows.Forms.ApplicationContext)

MethodSignatureFull=Void System.Windows.Forms.Application+ThreadContext

.RunMessageLoopInner(Int32, System.Windows.Forms.ApplicationContext)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Application+ThreadContext.RunMessageLoopInner(

Int32, System.Windows.Forms.ApplicationContext)[]

TypeName=ThreadContext

99

APPENDIX B. STACK TRACE OF THE PROTECTED METHOD CALL

TypeNameFull=System.Windows.Forms.Application+ThreadContext

--- StackFrame #: 34 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=RunMessageLoop

MethodNameFull=System.Windows.Forms.Application+ThreadContext.RunMessageLoop

MethodSignature=RunMessageLoop(Int32, System.Windows.Forms.ApplicationContext)

MethodSignatureFull=Void System.Windows.Forms.Application+ThreadContext

.RunMessageLoop(Int32, System.Windows.Forms.ApplicationContext)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Application+ThreadContext.RunMessageLoop(Int32,

System.Windows.Forms.ApplicationContext)[]

TypeName=ThreadContext

TypeNameFull=System.Windows.Forms.Application+ThreadContext

--- StackFrame #: 35 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=Run

MethodNameFull=System.Windows.Forms.Application.Run

MethodSignature=Run(System.Windows.Forms.Form)

MethodSignatureFull=Void System.Windows.Forms.Application.Run(System.Windows.Forms.Form)

Namespace=System.Windows.Forms

ReturnName=Void

Text=Void System.Windows.Forms.Application.Run(System.Windows.Forms.Form)[]

TypeName=Application

TypeNameFull=System.Windows.Forms.Application

--- StackFrame #: 36 - 11/7/2013 4:40:46 PM ---

nFileName=

FilePath=

LineNumber=0

MethodName=Main

MethodNameFull=WinForms.Program.Main

MethodSignature=Main()

MethodSignatureFull=Void WinForms.Program.Main()

Namespace=WinForms

ReturnName=Void

Text=Void WinForms.Program.Main()[]

TypeName=Program

TypeNameFull=WinForms.Program

100

	Abstract
	Disclaimer
	List of figures
	List of abbreviations
	Introduction
	The topic
	Motivation behind the topic and thesis problem statement
	Scope of the thesis
	Structure of the thesis

	Background
	Java exists already, why use .NET?
	.NET Framework structure
	From source code to executable binary
	.NET Assembly
	Physical layout of internal structures
	CLR's perspective

	.NET application execution
	Execution: step one
	Execution: step two

	Execution security

	Practical part
	Part 1: Common RCE techniques applicable to .NET
	Native code debugger
	Native code debugger with .NET-awareness
	Static analysis and application modification
	CIL round-tripping
	Byte-patching
	Patching with decompiler and Mono.Cecil

	Part 2: Analysis of the InishTech SLP software protection
	Initial analysis
	Testing on a commercial application

	Additional areas of interest
	Conclusion and future work
	Bibliography
	Appendix Dumpbin utility output for SampleApp.exe
	Appendix Stack trace of the protected method call

