Unsloth ist ein Framework zum Fine-Tuning und Reinforcement Learning (RL) großer Sprachmodelle (LLMs). Unsloth wirbt damit, Fine-Tuning und Inferenzprozesse 2 × bis 30 × schneller durchzuführen als herkömmliche Ansätze wie z. B. FlashAttention2 (“FA2”). Der Speicherbedarf (VRAM) soll deutlich reduziert sein beispielsweise bei Quantisierung auf 4-Bit (QLoRA) geringerer Verbrauch gegenüber älteren Methoden. Unterstützung von Modellen im Transformer-Stil, inkl. Sprach-, Text- und multimodale Modelle. Github Repo, Homepage
wget -qO- https://raw.githubusercontent.com/unslothai/unsloth/main/unsloth/_auto_install.py | python -
Docker
# Requires NVIDIA Container Toolkit docker run -d -e JUPYTER_PASSWORD="mypassword" \ -p 8888:8888 -p 2222:22 \ -v $(pwd)/work:/workspace/work \ --gpus all \ unsloth/unsloth
from unsloth import FastLanguageModel, FastModel import torch from trl import SFTTrainer, SFTConfig from datasets import load_dataset max_seq_length = 2048 # Supports RoPE Scaling internally, so choose any! # Get LAION dataset url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl" dataset = load_dataset("json", data_files = {"train" : url}, split = "train") # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/gpt-oss-20b-unsloth-bnb-4bit", #or choose any model ] # More models at https://huggingface.co/unsloth model, tokenizer = FastModel.from_pretrained( model_name = "unsloth/gpt-oss-20b", max_seq_length = 2048, # Choose any for long context! load_in_4bit = True, # 4-bit quantization. False = 16-bit LoRA. load_in_8bit = False, # 8-bit quantization load_in_16bit = False, # [NEW!] 16-bit LoRA full_finetuning = False, # Use for full fine-tuning. # token = "hf_...", # use one if using gated models ) # Do model patching and add fast LoRA weights model = FastLanguageModel.get_peft_model( model, r = 16, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state = 3407, max_seq_length = max_seq_length, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) trainer = SFTTrainer( model = model, train_dataset = dataset, tokenizer = tokenizer, args = SFTConfig( max_seq_length = max_seq_length, per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 10, max_steps = 60, logging_steps = 1, output_dir = "outputs", optim = "adamw_8bit", seed = 3407, ), ) trainer.train()